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tors in any group in which more than half the operators are of
order 2.

A (29, 28) isomorphism between G, and the direct product
of the dihedral rotation group of order 28+ into an operator
of order 2 can be established in such a manner as to obtain a
group in which the number of operators of order 2 is either
3 4 2% 4 2641 4 QotB op 3 4 2o+t 4 2B+ L Qeth-1 B~ (0, In
fact, it is possible to form other such isomorphisms, but
these two seem especially useful in this connection. Moreover,
by establishing a (2%, 2#) isomorphism between G, and a group
of order 2f+2 which is constructed in the same way as G, we
arrive at groups which contain any of the following three num-
bers of operators of order 2: 3 4 2% 4 28 4 2078 3 4 el 4
28+1 4 2a+B—2, 3+ Qa+1 + 28 + Qatp—1

From the above results it follows directly that there are
groups of order 2™ which contain any prescribed number of oper-
ators of order 2 which satisfies the conditions that itis = 3 mod. 4
and less than 124. By other considerations this limit can read-
ily be extended, but my methods seem too special to be given
here. It would be interesting to find a number = 3 mod. 4 which
could not equal the number of operators of order 2 in any
group of order 27, or to prove the non-existence of such a
number,
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ProrEssorR MASCHKE * has proved (with a certain restriction)
that the coefficients of finite linear substitution groups can, by
proper transformations, be made rational functions of roots of
unity. Professor Burnside 1 has also recently written on this
subject. In this note it is proved that linear groups all of

* Maschke, Math, Annalen v. 50 (1898), p. 492.
+ Burnside, Proc. London Math, Sociely, ser. 2, v. 3 (1905), p. 239.
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whose elements are finite monomial substitutions, that is, of
the form

v =aw, Gy=1,2,---n),
(n is the number of variables) can be written so that all the
coefficients are roots of unity.

THEOREM 1. Any non-vanishing element of the principal
diagonal of a monomial substitution of finite period is a root of
umnity.

Consider the kth power of a substitution S. If a lies in the
principal diagonal of S, a* occupies the same place in the
principal diagonal of §*. Hence a is a root of unity.

TaEOREM II.  The product of two non-vanishing elements of
the same or any two substitutions of a group ( Q) of finite monomial
linear substitutions, which are symmetrically placed with respect
to the principal diagonal, is a root of unity.

The product of these two elements stands in the principal
diagonal of the product of the two substitutions.

TarorEM III. If G has no coefficient a, zero for all its sub-
stitutions, it can be transformed into another monomial group such
that the non-vanishing element in the first column of every substi-
tution of G becomes a root of unity.

Since no element @, is zero for every substitution of G, we
can choose n — 1 substitutions

2) 2 3) 3 —
A® = (aQ), AP =(d}), - AW = (a}),
in which none of the coefficients

2 3
@52), a§3), ] afy

1n

vanish, Transform G by the canonical substitution
@, = x,[p, (t=1,2, -, n).

The transformed group (G') is monomial. If p, is an arbitrary
root of unity, and if p, = a{}, p, = a{¥, -- -, p, = af, we have
in place of A®, A®) ... A®™ gubstitutions with p, as the
only non-vanishing element in the first row of each. Now
apply Theorem II to all the substitutions of G, and the
present theorem follows.

TuroreM IV. If G has no coefficient everywhere zero the
non-vanishing elements of every substitution are roots of unity.
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Consider the first column of a product AB. The elements
of this column are obtained by multiplying the rows of 4 into
the first column of B. Let A and B run through all the sub-
stitutions of @’. Every coefficient is seen to be the quotient
of two roots of unity, that is, a root of unity.

Suppose that a certain coefficient «,, vanishes in every substi-
tution of . We may assume that the variables of ( have
been so permuted that the n — r last elements in the first row of
all the substitutions of & are zero, and that no other row has
more than n — » elements which vanish for every substitution
of G.

THEOREM V. Every substitution of G 1is in the form

where N, and N, are monomial matrices, without further trans-
Jformation,

There now are » — 1 substitutions 4@, A®), ... A® jn
which the coefficients a{?, a{¥, - --, a{?’ do not vanish. From
the products

A®B, A®B, ..., A"B,

by, =0, aXlb,, =0, -+, a® =0 ((i=r4+1,.-,0),
where B is any substitution of . Hence the last n — 7 co-
efficients of the first » rows of all the substitutions of G are
zero. Since these substitutions are monomial the first r ele-
ments in the last n — r rows are also everywhere zero.

The group in the variables x,, ,, - - - @, has by hypothesis no
coefficients that are everywhere zero, so that for it Theorem I'V
holds.

We continue in this way with the group in the last n —
variables, and finally have the

TaEOREM VI.  The coefficients of a group of monomial linear
substitutions of finite period may, by means of transformations
which leave them monomial, be made roots of unity.
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