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T H I R D R E P O R T ON RECENT PROGRESS I N T H E 
T H E O R Y O F GROUPS O F F I N I T E ORDER. 

BY PROFESSOR G. A. MILLER. 

( Continued from page 91. ) 

§ 3. GROUP OF ISOMORPHISMS. 

In view of the fundamental importance of the group of iso
morphisms of any group it is desirable to have theorems by 
means of which the group of isomorphisms I of a given substi
tution group G can be readily determined. If any G of degree 
n contains n distinct subgroups of degree n — 1 which are 
composed of all the substitutions omitting fixed letters, then 
its substitutions transform these n subgroups just as they 
transform their own letters and hence G contains no substitu
tion besides identity which is commutative with each one of 
these n subgroups of degree n —- 1. When G is transitive it 
will have n such subgroups, provided it has one subgroup of 
degree n — 1. Any operator which transforms each of these 
n subgroups into itself must therefore be commutative with 
every operator of G. If G does not involve a subgroup of 
degree n which may correspond to such a subgroup of degree 
n — 1 in a holomorphism of Gr, then its I can be represented as 
a substitution group of degree n which involves G as an invari
ant subgroup. 

I f G is a transitive group and contains a subgroup of degree 
n — 1, its I may be represented as a transitive substitution 
group whose elements are the subgroups which may correspond 
to one of the largest subgroups of degree n —- 1 in a holo
morphism of G. If the degree of this transitive group exceeds 
n, it must be imprimitive and the m conjugate largest subgroups 
of degree n —- 1 constitute one system of imprimitivity, while 
its other systems correspond to subgroups of degree and of in
dex n under G. While these general theorems are frequently 
directly useful to determine the J of a given 6r, a number of 
recent more special theorems find wide application. Among 
these are the following : 

If an abelian group G which involves operators whose orders 
exceed 2 is extended by means of an operator of order 2 which 
transforms each operator of G into its inverse, then the I of 
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this extended group is the holomorph of 6?.* The I of the 
group obtained by extending the cyclic group of order 2m 
(m > 2) by means of an operator of order 4 which transforms 
each of its operators into its inverse is the holomorph of this 
cyclic group. The square of a complete group has the double 
holomorph of this group for its I. The necessary and suf
ficient condition that a holomorphism corresponds to an in
variant operator under I is that the operators which corre
spond to themselves form an invariant subgroup and that the 
remaining operators correspond to themselves multiplied by 
invariant operators.f 

If an operator of order 2 in I transforms an operator s of G 
into 8^, then it transforms s} into its inverse. Hence every 
operator of order 2 in J transforms some operators of G into 
their inverses. Moreover, if such an operator transforms 
every operator of G except identity into a different operator, it 
must transform every operator of G into its inverse and hence 
G is an abelian group of odd order. Burnside considered the 
properties of G when I contains operators of order 3 which 
transform every operator of G except identity into a different 
operator. I t may be remarked that the review of this note 
in the Jahrbuch uber die Fortschritte der Mathematik J is mis
leading, since it does not state that the operator of order 3 
under consideration transforms all of the operators of G except 
identity into different operators. 

By means of the preceding theorems it is easy to find the 
groups of isomorphisms of substitution groups of low degrees. 
This has been done for all the groups which can be represented 
on 7 or a smaller number of letters, as well as for the simple 
groups whose degrees do not exceed 14. Among the latter the 
group of order 7920 is especially interesting since it is both 
complete and simple. I t is not difficult to see that the direct 
product of a complete group which contains only one subgroup 
of index 2 and the group of order 2 is simply isomorphic with 
its I. In particular, the direct product of the symmetric group 
whose degree is not 2 or 6 and the group of order 2 is simply 
isomorphic with its I. 

The groups of isomorphisms of a number of special types of 

* Amer. Jour, of Mathematics, vol. 29 (1907), p. 4. 
f Ti ansactiom Amer. Math. Society, vol. 4 (1903), p. 153. 
t Vol. 34 (1905), p. 160. 
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groups of order pm have recently been determined. Young* 
determined these groups for such groups of order pm as contain 
cyclic subgroups of order p™_1. In chapter 2 of Le Vavas-
seur's work cited above, he considers groups of isomorphisms of 
the groups of order p4 , and in chapter 3 he considers the groups 
of cogredient isomorphisms of a large number of the groups of 
order 25. In the current volume of the Transactions of this 
Society, Ranum generalizes the linear congruence groups of Jor
dan " by using different moduli for the different elements of the 
matrices, so that each element is a residue of its own particular 
modulus." He applies these generalized linear congruence 
groups to the group of isomorphisms of any abelian group an(J 
obtains a number of important new theorems. One of these 
affirms that the necessary and sufficient condition that the 
group of isomorphisms of an abelian group of order pm be solv
able is that all its invariants are distinct when p > 3, and that 
no three of the invariants are equal to each other when p = 2 
or 3.f 

The group of isomorphisms of every finite group is finite 
since its order cannot exceed (# -— 1) !, g being the order of the 
group. There are only four groups for which the order of I 
has this maximal value; viz., the groups of orders, 1, 2, 3 and 
the non-cyclic group of order 4. As a rule the order of I is 
very much smaller, since the possible holomorphisms are greatly 
restricted by the properties of the operators. I t has been ob
served that in a non-abelian group not more than three-fourths 
of the operators may correspond to their inverses and the 
groups which have this property have been considered. From 
this fact it follows that an abelian group may be defined by 
the property that more than three-fourths of its operators may 
correspond to their inverses in a holomorphism of the group.J 
Manning has considered the groups in which five-eighths or 
more of the operators may correspond to their inverses and in 
this connection proved a fundamental theorem in regard to the 
properties of groups involving two invariant subgroups which 
have only identity in common.§ 

The group of isomorphisms of the cyclic group of order 
2 • 3™ is the cyclic group of order 2 • 3 m - 1 . Hence it follows 

* Young, Amer. Jour, of Mathematics, vol. 25 (1903), p. 206. 
f Ranum, Transactions Amer. Math. Society, vol. 8 (1907), p. 89. 
t Annals of Mathematics, vol. 7 (1906), p. 59. 
§ Manning, Transactions Amer. Math. Society, vol. 7 (1906), p. 223. 
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that each of the m successive groups of isomorphisms of this 
cyclic group as well as of the cyclic group of order 3m is 
cyclic while the (m + l)th is identity. The only other 
groups which have the property that all their successive 
groups of isomorphisms are cyclic are the group of order 
4 and those whose order is a prime number of the form 
2-3 m + 1. From the fact that the order of the group of 
isomorphisms of every group whose order exceeds 2 is 
greater than unity it follows that we arrive at an infinite sys
tem of groups by forming the successive holomorphs of any 
group whose order exceeds 2. The characteristic operators of 
a group are the invariant operators of its holomorph. Since 
an abelian group cannot have more than one characteristic oper
ator besides identity, it results that each of the successive holo
morphs of an abelian group has either one or no invariant 
operator besides identity, as the abelian group has one or no 
characteristic operator in addition to identity. The question 
whether a non-abelian group can have more than one char
acteristic operator besides identity remains unsettled. This 
is also true of the question whether a non-abelian group can 
have an abelian group of isomorphisms. If such a group ex
ists there must be a metabelian group of order pa which has 
the same property. 

The characteristic properties of a complete group are that it 
does not admit outer isomorphisms and none of its operators 
except identity is invariant under the group. A large num
ber of well-known groups have the latter property without 
having also the former. I t seems desirable to find groups 
which have the former property without having also the latter. 
In fact, the second part of the definition can only be justified 
by a proof of the existence of such a group. This proof is in
cluded in the proof that there exists a group of composite order 
which is both simple and complete since the direct product of 
such a group and the group of order 2 admits no outer isomor
phisms but includes an invariant operator of order 2.* In 
view of the historic interest in the five-fold transitive groups 
of degrees 12 and 24 respectively it is of special interest to 
note that the latter is a complete group while the former 
has a group of twice its own order for its group of isomor
phisms. 

* Messenger of Mathematics, vol. 37 (1907), p. 54. 
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§ 4. SUBSTITUTION GROUPS. 

In 1896 " L e grand prix des sciences mathématiques" was 
awarded to Maillet for his memoir entitled " Recherches sur la 
classe et Pordre des groupes de substitutions." The memoir 
was not published until about six years afterwards * and hence 
its publication comes within the period covered by the present 
report. The memoir covers 120 pages and is divided into two 
parts. The first is devoted to the class of the primitive substi
tution groups which are simply isomorphic with either a sym
metric or an alternating group, and it is followed by two notes 
in which hypersystems and primitive groups whose class is not 
less than four-fifth of the degree are considered. The second 
part, which the author considers the more important, is devoted 
to the limit of the order of the groups of degree n which do not 
involve the alternating group of this degree. 

The term hypersystems is introduced with a view to exhibit
ing more clearly the connection between substitution groups 
and Lie's transformation groups, as well as to generalize some 
results previously published. Most of the results are exten
sions of theorems due to Jordan and Bochert. Some of these 
relate to the class of a primitive group which does not include 
the alternating group of the same degree. Manning considers 
the same question in several recent memoirs, f In most of the 
older work along this line the degree of such a group was as
sumed to be given and the smallest possible class of the primi
tive group was considered, while Manning assumes the mini
mum class and finds the maximum degree for this class. 

The important theorem that every substitution group of 
prime degree p which contains more than one subgroup of 
order p is at least doubly transitive was first proved by means 
of group characteristics. Burnside has recently given a much 
simpler proof based upon a purely arithmetical property of the 
prime roots of unity. % The enumeration of all the possible 
substitution groups of a given degree has been materially ad
vanced during the period under consideration. Miss Martin's 
enumeration of the imprimitive groups of degree 15 was com
pleted by the list published by Kuhn. This list is preceded 

* Maillet, Mémoires présentés par divers Savants a V A cadêmie des Sciences de 
l'Institut national de France, vol. 32 (1902). 

f Manning, Transactions Amer. Math. Society, vol. 4 (1903), p. 351 ; vol. 6 
(1905), p. 42 ; BULLETIN, vol. 13 (1906), p. 20. 

J Burnside, Quar. Jour, of Mathematics, vol. 37 (1906), p. 215. 
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by a number of new theorems relating to the construction of 
such groups and groups which involve all the substitutions 
which are commutative with each of the substitutions of a 
transitive group.* 

The investigations of Sylow in regard to groups of a prime 
degree which were noted in the preceding report have been ex
tended by Frobenius, who proved that there are only four groups 
of degree p which contain exactly p + 1 subgroups of order p. 
This theorem was also proved by de Séguier without the use of 
group characters in a memoir which, like the one by Frobenius, 
contains a large number of other new theorems on substitution 
groups.f From the results of the last two paragraphs it fol
lows that each of the unknown transitive groups of degree p 
may be assumed both to be multiply transitive and also to in
volve more than p + 1 subgroups of order p. Hence these 
groups contain transitive subgroups of lower degree and there
fore belong to a category which has recently been studied by 
Manning. J The special case where p = 2q + 1, q being a 
prime, was considered by de Séguier in the memoirs just noted 
and he arrived at the result that there is no transitive group ot 
degree 23 in addition to the 7 which are well known. This re
sult has been verified by the writer. I t may be observed that 
the smallest possible number of transitive groups of degree 
p > 5 is 6. Jordan proved that this is also the actual number 
when p is either 47 or 59. Rietz proved that for every value 
of p > 11 of the given form there exists a simple group of com
posite order which can be represented as a simply transitive 
primitive group of degree 1 + %>•§ 

A fundamental theorem relating to any transitive substitution 
group G of degree n has been stated as follows : If p& is the 
highest power of p which divides n, each Sylow subgroup of 
order pa in G has a transitive constitutent of degree p 3 and all 
its other transitive constituents are of degree of p&+y (y > 0). 
If n = 2qai, q being any odd prime, each of the Sylow sub
groups whose order is a power of q has just two transitive con
stituents of degree qai. If n is a power of a prime, a Sylow 

"*Kuhn, Amer. Jour, of Mathematics, vol. 26 (1904), p. 45. 
f Frobenius, Berliner Sitzungsberichte, 1902, p. 351 ; de Séguier, Comptes 

rendus, vol. 137 (1901), p. 37, and Liouville, vol. 8 (1902), p. 253. 
J Transactions Amer. Math. Society, vol. 7 (1906), p. 497. 
§ Rietz, BULLETIN, vol. 11 (1905), p. 544. 
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subgroup of G whose order is a power of the same prime is 
transitive.* 

The important applications of group characters to such prob
lems as the determination of the least number of variables by 
means of which a given abstract group may be represented as 
a linear group, and of all the linear homogeneous substitution 
groups which are either simply or multiply isomorphic with a 
given group, have continued to attract many investigators to 
this field with a view either to extensions of the theory or to 
making it more accessible. Dickson, Burnside, and Schur have 
published valuable expository articles on the theory of group 
characters in which the subject is approached from different 
standpoints.f While Burnside makes considerable use of 
Hermitian forms in his fundamental theorems, Schur replaces 
these by simpler considerations so that he presupposes only an 
elementary knowledge of matrices from the theory of linear 
substitutions. Both of these authors employ methods which 
differ widely from those used by Frobenius, and Schur 
develops his theory under the heading " New foundation for 
the theory of group characters." 

Frobenius proved various theorems relating to the group 
characters of the multiply transitive groups which do not in
volve the alternating group of the same degree and gave a 
number of historical data relating to these groups. Among 
these theorems are the following : A character of the symmetric 
group whose dimension does not exceed | r is also a character 
of every r-fold transitive group of the same degree. The neces
sary and sufficient condition that a group is either two-fold or 
four-fold transitive is that it has the character a — 1, or the 
characters a — 1, Ja(oc — 3) + /?, | ( a — l)(a — 2) — /3 respec
tively, where a, /3, 7, • • • are the number of cycles of degrees 
1, 2, 3, • • • in a substitution.J By means of a fundamental 
theorem relating to the roots of unity Burnside establishes sev
eral theorems which are useful in calculating group characters, 
and by way of illustration he determines the characters of the 
simple group of order 504. § Alasia || has also given a brief 
exposition of the characters of several groups. 

* BULLETIN, vol. 9 (190J), p. 543. 
f Dickson Ann. of Math., vol. 4 (1902), p. 25; Burnside, Proc London 

Math.Society, vol. 1 ( 1903), p. 117; Schur,Berliner Sitzungsberichte, 1905,p. 406. 
t Frobenius, Berliner Sitzungsberichte, 1904, p. 558. 
\ Burnside, Proc. London Math. Society, vol. L (1903), p. 112. 
II Alasia, Bivista di Fisica, Matematica e Scienze naturali, anno. 6 (1905), 

p. 1905. 
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Loewy published several important memoirs which are prin
cipally devoted to the study of the reducibility of the linear 
homogeneous substitution groups. Most of his theorems apply 
to groups of infinite order but he has also considered groups of 
finite order.* One of his theorems was extended by Dickson, 
who established its validity for much more extensive domains.f 
All the finite collineation groups in three variables have recently 
been determined by Blichfeldt, who employs more direct methods 
than those used by Jordan and Valentiner in their much earlier 
investigation of this problem. Blichfeldt gives also an enumera
tion of the principal imprimitive collineation groups in four 
variables, together with their generating substitutions, and a 
complete list of the primitive ones based upon various theorems 
which were developed by him principally in the Transactions 
of this Society. J 

Schur has given a complete solution of the problem of find
ing all the possible representations of a finite group as a linear 
fractional substitution group, and, together with Frobenius, he 
established the following fundamental theorem : A finite group 
of linear substitutions is equivalent to a real group when its sub
stitutions transform into itself a quadratic form of a non-vanish
ing determinant, and only then ; two isomorphic groups of linear 
substitutions have the same irreducible components if any two 
corresponding substitutions have the same trace (Spur) and 
only then.§ The fundamental theorem proved by Jordan about 
thirty years ago, which establishes the fact that every finite 
linear homogeneous group on n variables contains an invariant 
abelian subgroup such that the order X of the corresponding 
quotient group is less than a certain number depending only 
upon n, has been extended both by Blichfeldt and by Schur. 
The former has found further restrictions for X in the article 
published in the Transactions to which we have just referred, 
as well as in an earlier article in the same journal, while the 
latter has considered the possible orders of the linear groups 
when the trace of each substitution is restricted to certain fields. 

* Loewy, Transactions Amer. Math. Society, vol. 4 (1903), pp. 44 and 171 ; 
ibid., vol. 6 (1906), p. 504; Verhandlungen des dritteu internationalen 
Mathematiker-Kongresses (1904), p. 194. 

f Dickson, Transactions Amer. Math. Society, vol. 4 (1903), p. 434. 
X Blichfeldt, Mathematische Annalen, vol. 63 (1907), p. 552 ; ibid., vol. 60 

(1905), p. 204 ; Transactions Amer. Math. Society, vol. 6 (1905), p. 230. 
§ Frobenius and Schur, Berliner Sitzungsberichte (1906), p. 186 ; Crelle, 

vol. 127 (1904), p. 10. 
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In this case it is possible to find a number which is divisible 
by every possible group and which depends only upon the field 
and the number of variables.* 

Shaw has investigated the algebras defined by finite groups. 
" By a group algebra is meant that linear algebra whose units 
are defined to be such that each unit e. corresponds to an oper
ator 0. of some given finite abstract group, and conversely, and 
such that to each equation of the group 0.0.= Oh corresponds 
an equation e{e. = ek of the algebra." In this investigation 
Shaw confines himself to the scalar continuous field and ob
serves that if the coefficients are any numbers in such a field, 
every abelian group of the same order gives the same group 
algebra, a result which is not true for all fields of coefficients. 
He points out the ultimate connection between group algebras 
and the theory of group characters and group determinants, 
and cites Poincaré's fundamental theorems bearing on such 
algebras, f 

In volume 23 of the Mathematische und Naturwissenschaft-
liche Berichte aus Ungarn, Visnya determines a necessary and 
sufficient condition that a finite group of linear substitutions is 
intransitive and he also considers all the possible Hermitian 
invariants of such a group. A sufficient condition for its in-
transitivity is due to Maschke and was published much earlier. 
Burnside has recently given some new criteria for the finiteness 
of the order of a group of linear substitutions. The co
efficients in the substitutions of a group of homogeneous 
linear substitutions are generally complex numbers of the 
form a + fti, where a and /3 are real numbers. If the group 
is of finite order, there is a finite number of coefficients and 
therefore there is a finite positive number M such that for 
each coefficient | a | < M and | /31 < M,. Similarly there must 
be another positive number m such that for each coefficient 
| a | = 0 or > m and | /31 = 0 or ;> m. The existence of these 
two numbers is proved to be both a necessary and a sufficient 
condition that the group is finite. Another necessary and suf
ficient coridition is expressed by the following theorem : " If, 
in a group of linear substitutions on a finite number n of sym
bols, the order of every substitution is equal to or less than a 
finite number m, then the group is of finite order." Burnside 

*Schur, Berliner Sitzungsberiehte (1905), p. 1. 
fShaw, Transactions Amer. Math. Society, vol. 5 (1904), p. 326. 
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proves this theorem * without giving reference to the less gen
eral theorem proved by Loewy which is mentioned at the end 
of my report on the groups of an infinite order.f Another test 
given in this paper for the finiteness of a linear substitution 
group on a finite number of symbols is that it contains a finite 
number of distinct sets of conjugate substitutions. 

Quite recently Loewy has investigated the groups of linear ho
mogeneous substitutions which are of the type of a finite group 
and gave a complete development of their theory.J Dickson 
has recently published two papers in which he considers for the 
first time the problem of representing a given finite group as a 
linear congruence group. § He points out that the only one of 
the different expositions of Frobenius's theory of group charac
ters mentioned above which may be utilized in the construction 
of a corresponding modular theory is that by Schur. While 
the developments of Frobenius relate to the representation of 
a given finite group as a non-modular linear group the work of 
Dickson employs a modulus in such a representation. 

UNIVERSITY OF ILLINOIS, 
July, 1907. 

T H E DRESDEN M E E T I N G O F T H E DEUTSCHE 
M A T H E M A T I K E R - V E R E I N I G U N G . 

T H E 1907 meeting of the Deutsche Mathematiker-Vereinig-
ung was held in Dresden, September 15-21, in conjunction 
with the 79th convention of the Naturforscher und Aerzte. 
The meeting took place in room 80 of the Technische Hoch-
schule. In commemoration of the 200th anniversary of Euler's 
birth a considerable number of the papers were devoted to an 
exposition of his services to science. The following papers 
were read : 

1. K. ROHN, Leipzig: "Algebraic space curves" (report). 
2. F . K L E I N , Göttingen : " Concerning the connection be

tween the so-called theorem of oscillation of differential equa
tions and the fundamental theorem of automorphic functions." 

*Burnside, Proc. London Math. Society, vol. 3 (1905), p. 435. 
t BULLETIN, vol. 7 (1900), p. 121. 
t Loewy, Mathematische Annalen, vol. 64 (1907), p. 264. 
1 Dickson, Transactions Amer. Math. Society, vol. 8 (1907), p. 389. 


