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ON CEKTAIN CONSTANTS ANALOGOUS TO 
F O U R I E R ' S CONSTANTS. 

BY MR. CHARLES N. MOORE. 

(Read before the American Mathematical Society, April 25, 1908.) 

I N the course of an article which appeared recently in the 
Rendiconti del Circolo Matematico di Palermo,* Landau has re
produced two proofs of the following theorem : 

A. If the function yjr(x) is continuous in the interval (0 = x = 1) 
and if 

(1) f xv^{x)dx = 0 (v = 0, 1, 2, •.•), 

then 
ir(x) = 0 ( O S J B ^ I ) . 

The proofs that Landau gives in detail are due to Lerch and 
Stieltjes. In addition he cites a second proof due to Stieltjes 
and a proof due to Phragmen. 

As far as I am able to learn, no one seems to have mentioned 
the fact that this theorem, of which so many proofs have been 
given, is essentially equivalent to a theorem due to Hurwitzf 
which may be stated as follows : 

B. If in the interval (0 = x = 2TT) the function f(x) is finite 
and integrable and if all of its Fourier's constants are zero, then 
f(x) is zero at every point of the interval at which it is 
continuous. 

Theorem (A) may be deduced from (_B) as follows : 
I t is obvious that if yfr(x) is finite and integrable in the in

terval (0 = x = 1) and if condition (1) is fulfilled, then the 
function 

M = *(y/2ir) 

satisfies all the conditions of Hurwitz's theorem. For 

*Vol. 25 (1908), p. 1. 
fCf. Mathematische Annalen, vol. 57 (1903), p. 440. Cf. also Bonnet, 

Mémoires de l'Académie de Belgique, vol. 23 (1850), p. 11. 



1908.] ON CERTAIN CONSTANTS. 369 

- I f(y) cos nydy = 2 I ^r(x) cos 2w7nrd!# 

r r1 4n27T2 r 1 n 
= 2 I f(x)dx 2 j - I aty(a?)cto + ••• = 0 * , 

and similarly 
], /»2,r 

- I / (2 / ) s i n nvdv = 0-

Consequently f(y) is zero at every point of the interval 
(0 = 2/ = 2ir) at which it is continuous, and hence yjr(x) is zero 
at every point of the interval (0 = x = 1) at which it is con
tinuous. 

Thus Hurwitz's theorem gives us an immediate proof of 
theorem (A) in the more general case in which yfr(x) is merely 
finite and integrable. However, as Professor Bôcher has 
pointed out, f Hurwitz's theorem holds even when f(x) becomes 
infinite at a finite number of points, provided 

-»2TT 

\dx X 2TT 

IX») I 
converges. Therefore theorem (A) holds for the case in which 

| y]r(x) | dx I is convergent.! 
I will now give a rather simple proof of theorem (A) for a 

still more general case and will then obtain theorem (i?) under 
equally general conditions, as a consequence of this theorem. 
As far as I know, neither theorem has been proved before with 
the same degree of generality. 

I will begin by proving two lemmas. 
LEMMA 1. If yfr(x) is continuous in the interval (0 = a = x ~ b) 

and if 

* We have a right to multiply the series for the cosine by a function that 
is finite and integrable and to integrate it term by term since the series is 
uniformly convergent throughout any finite interval. 

f Cf. Annals of Mathematics, vol. 7 (1906), p. 101. 
X This is in view of the fact that we have a right to multiply the series 

for the cosine by a function that is absolutely integrable and to integrate 
term by term. 
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(2) f xy+nir(x)dx = 0 ( v ^ O ; n = 0, 1, 2, . . •), 

then 
yjr(x)=:0 (a^x^b). 

Since ^(x) is continuous, we know from a theorem due to 
Weierstrass * that we can develop it in a uniformly convergent 
series of polynomials in x so that we have 

(3) f (x) = P0(x) + P,(x) + P2(x) + • • •. 

We now multiply both sides of equation (3) by xyty(x), and in
tegrate from a to 6. Since the series on the right hand side of 
(3) is uniformly convergent, we have a right to integrate term 
by term and hence in view of condition (2) the whole right 
hand side vanishes, so that we get 

xy[ylr(x)]2dx = 0. 

Consequently, since yjr(x) is continuous, it must be zero at every 
point of the interval {a^x — b) and the lemma is proved. 

By a change of variable this lemma can be thrown into the 
slightly more general form : 

LEMMA 2. If yfr(x) is continuous in the interval (0 = a = x = b) 
and if 

(4) f xv+na^(x)dx = 0 ( 7 ^ 0 , a > 0 ; n = 0 , 1 , 2 , . . . ) , 
*J a 

then 
^(x) = 0 (a^x^b). 

We are now in a position to prove the following two 
theorems : 

THEOREM I . If in the interval (0 = a = x = b) yfr(x) is finite 
save for a finite number of points, and is integrable, and if 
furthermore 

(5) f xy+na^(x)dx = Of (7 = 0, a > 0 ; n = 0, 1, 2, • •.), 

* Cf. Picard, Traité d'Analyse, vol. 1,2d éd., p. 279. Lerch's proof referred 
to above is based on a slightly different form of this theorem. The proof as 
I have given it, however, is considerably briefer. 

t Condition (5) is not essentially more general than condition (1), since it 
involves merely a change of notation. The real generalization obtained in 
Theorem I is in the removal of restrictions upon $(x). 
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then ijr(x) is zero at every point of the interval (a = x^b)at which 
it is continuous. 

Let 

(0) I xV\fr(x)dx = %(x). 
«va 

Then x(x) is continuous in the interval (a = a?=6) and in view 
of (6) and (5) 
(7) X(«) = 0, %(6) = 0. 

Let us take the integer m so great that ma > 1. Then for 
n = m + h = m we have from an integration by parts 

xy+nax{x)dx = \xnax(x)~] I — I xma~l+kax{x)dx (k=0,1,2,.. •) 

or in view of (5) and (7) 

f xma-^kax(x)dx = 0 (Jb = 0, 1, 2, • • •) 

and hence from Lemma 2 

(8) %(» = I xyyfr(x)dx = 0 (a ^ » ^ 6). 
t / a 

Differentiating (8), we see that xyyjr(x), and consequently ^(œ), 
is zero at every point of the interval (a = x = b) at which it is 
continuous.* 

THEOREM I I . If in the interval (0 = a = x~b) yfr(x) is 
finite save for a finite number of points, and is integrable, and if 
furthermore 

I qy\r(x) cos nxdx = 0 (n = 0, 1, 2, •. •), 

(9) J't 

J i/r(cc) sin nxdx = 0 (n = 1, 2, •. •), 

then y]r(x) is zero at every point of the interval {a~x^b) at which 
it is continuous. 

* If a = 0 and y > 0 it does not necessarily follow that, when %yip(x) is 
zero for x = 0, VM is zero also. However, when (8) is fulfilled for a = 0, 
it is easily seen from the integrability of ip(x) that it must be zero for x — 0 
if it is continuous there. 
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We know that in any fixed interval xn can be developed in 
a Fourier's series that is uniformly convergent throughout the 
interval and which when differentiated term by term will yield 
a series that is uniformly convergent throughout the same 
interval and which represents there the derivative of xn.* 
Hence we have 

(10) xn = aQ + ax cos x + bx sin x + • • • (a = x = 6), 

(11) nxn~l = — ax s in x + b2 cos œ — • • • (a^==x = b). 

In view of (10) and the hypothesis that yfr(x) is integrable in 
the interval a = x = b, we have 

X
b s*b s*b 

^(x)dx = a0 I yfr(x)dx + ax cos b I yfr(x)dx 
*J a *Ja 

(12) 

+ bx s in 6 I y$r(x)dx + • • •. 

Now let 

XX 

Then %(cc) is continuous in the interval (a ~ x = 6), and since 
the series on the right hand side of (11) is uniformly conver
gent, we have 

X b n>b 

xn~A%{x)dx = ax I x(x) s^n ^efaî 
KLL±) r*> 

— &! I x(x) c o s ^dœ + • • •• 
Adding (12) and (14), we get 

X b fib 

yfr(x)dx — n I xn~l%(x)dx 

= a0 I yjr(x)dx + ax cos 6 J yfr(x)dx + I %(tc) sin ccdte 

+ 6j sin 6 I yjr(x)dx — I ^(#) cos #dte + • •. or 
*For sufficient conditions that a function may be developed in a uni

formly convergent Fourier's series and that a uniformly convergent Fourier's 
series representing its derivative may be obtained by differentiating that 
series term by term see Professor Bocher's article referred to above. 
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X
b nib nib 

xnyfr(x)dx = a0 I yjr(x)dx -f ax l y}r(x) cos xdx 

4- hx I i/r(tc) sin cccte + ...== 0 (n = 1, 2,- •.). 

Hence ^(œ) satisfies the conditions of Theorem I, and therefore 
it is zero at every point at which it is continuous. 

The method of proof used in Theorem I I may be applied in 
the case of developments in terms of any other normal functions, 
such as Bessel functions, Legendre's polynomials, etc., when
ever we know that xn can be developed in a convergent series 
of such functions which, when differentiated term by term, will 
yield a uniformly convergent series that represents the derivative 
of of*.* The method will enable us to show in such cases that 
if the coefficients of the development corresponding to any func
tion which we know to be finite, save for a finite number of 
points, and integrable, are all zero, the function is zero at every 
point at which it is continuous. 

NOTE ON T H E SECOND V A E I A T I O N I N AN 
I S O P E R I M E T R I C PROBLEM. 

BY DR. ELIJAH SWIFT. 

(Read before the American Mathematical Society, April 25, 1908.) 

SUPPOSE we have before us the simplest type of isoperimetric 
problem, namely to determine x and y as functions of a param
eter t, so that the definite integral 

J= I F(x,y,x', y)dt 

shall be a minimum, while another definite integral 

K = I G(x, y, x', y)dt 

* The existence of such developments can be proved for some of these oases 
by means of some theorems discussed by Stekloff. Cf. Mémoires de V Académie 
de St. Pétersbourg, ser. 8, vol. 15 (1904). 


