
1909.] THEORY OF NUMBERS. 217 

to Weierstrass, with the totality of those functions Sy of class 
G' which vanish at xx and x2 and satisfy the relation hK = 0. 

The proof of this lemma — which is an essential step in the 
chain of conclusions, and whose omission forms a serious gap 
in the older theory — constitutes the second difficulty. 

Neither of these difficulties occurs in the proof which we 
have given above. 

FREIBURG, i. B., 

November 19, 1908. 

NOTES ON T H E S I M P L E X T H E O R Y O F 
NUMBERS. 

BY PROFESSOR R. D. CARMICHAEL. 

(Read before the American Mathematical Society, October 31, 1908.) 

I . Continued Product of the Terms of an Arithmetical Series, 

1. Let a and c be two relatively prime positive integers and 
form the arithmetical series 

xa + c, (x = 0, 1, 2, • • -, n.— 1). 

If we inquire what is the highest power of a prime p contained 
in the product 

J J (xa + c), a =J= 0 (mod p), 
x=0 

we shall find that the general result takes an interesting form. 
The solution of the problem may be effected in the following 
manner : 

Evidently there exists some number x such that xa + c is 
divisible by p. Let i be the smallest value of x for which this 
division is possible, and let cx be the quotient thus obtained. 
Using the notation 
(1) H{y] 

to represent the index of the highest power of p contained in yy 

we will show that 

(2) ^ r f f (a» + «)} - ^ T l l (a» + «!)}+«!+ 1, 
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where 

is the largest integer not greater than (n — 1 — i^/p. In order 
to prove (2) we have only to notice that in the product of its 
first member only factors of the form 

(mp + ix)a + c 

contain p and that the quotient of the division is always of the 
form 

ma + cv 

and that e1 is the highest possible value of m. Performing the 
same operation on the iï-function of the second member and 
continuing the process, we should finally arrive at a number 
which is simply the index of the required power of p. 

In order to write this result in a convenient form let us 
define a suitable notation. Let ir be the least integer such 
that ia + cr_t contains p and let cr be the quotient of this 
division. For uniformity, set c = c0 and n — 1 = eQ. Further, 
let er be defined by 

<3) H^]-* 
Also let t be the first subscript for which 

°t(a + Gt)(2a + cù" ' (efl + Gt) 

does not contain the factor p. Then the preceding result may 
be written thus 

(4) ^rnV«+«o)|=r=fk+i)-
Since 0~ir^p — 1, as is evident from the definition of ir) 

we may deduce from (3) the following inequalities : 

Hence 
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This gives 

Taking the sum of these inequalities, we have by (4) 

[a*&]+&]+-"CB«-H 

where S (n — 1) is the index of the highest power of p not 
greater than n — 1. 

This result takes different forms according as n is or is not a 
power of jp. If n is a power of^?, we have evidently 

for every pa equal to or less than n. Remembering that 
when n=ph 

Vn\ rnl ph—l 

and using equation (7) in connection with inequality (6), we 
have 

I I (xa + c0) J = ^ — [ , n - p » . 

When n is not a power of p, it is evident that 

Y n~~\ |~ w —- 1 1 

Suppose now that 

(io) n = sy + v,?*-1 + • • • + KP + s0,
 8* 4= o, 

and at least one other 8 is not zero. Employing (9) and the 
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well-known formula 

+...= 
we may write (6) as follows : 

JP 1 

The inequalities in (11) confine the value of Hin narrow limits 
which are easily calculated. 

2. In the series xa + c, it may happen that the first x for 
which xa + c is divisible by p will give o as the quotient of 
this division. Then in the preceding discussion all the c's are 
equal ; and then also all the i's. Dropping subscripts from i 
and c and making repeated use of equation (3), we have 

I" n — 1 — il 
e i = L — ^ — > 

r ^ — - i l VeiP — ip~\ r ^ ~ 1— i — ipl 

*~L~y~J~L~~*ir~"_nL 7 J' 
|~ e2 — 1"| r e2p

2 — ip21 ^ I" n — 1 — i — ip — ip21 
e 3 = L ~ ^ J = L f J = L ? J' 

If we add one to each member of each of these equations and 
take the sum of the results ; then further, if we replace the re­
sulting first member by its value taken from (4), we have 

Vn—1— i—-ip+p2l Yn—l—i—ip—ip2+p*l 

+1 p j+|_ f j+-
3. If a — e = 1, equation (12) takes a very simple form. 

For this case i = p — 1. The result is the well-known theorem 
that the highest power of p contained in n ! is that whose 
index is 

UK?] + p - 1 
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where 
n = shp

h + sh_lP
h~l +... + 8lp + 80. 

4. If a = 2 and c = 1, equation (12) takes a special form of 
considerable interest. The terms of xa + c are the natural odd 
numbers in order, and p is an odd prime. I t is evident that 
i = i-(j) —1). Therefore 

-̂  — 1 — ^ — ip - - - — ip$~l + p13 1 

Then (12) becomes 

J{l-S-«-(S.-l)}-[*^±«] 

I I . J.n Extension of Fermât's Theorem, 

I t will be shown that the congruence 
jtfK») == l(mod n), 

where <f>(n) is Euler's ^-function of n, is still true when the 
modulus is a multiple of n formed in a definite way, x being 
prime to the new modulus. 

I t has been shown * that (j>(z) = a has always more than one 
solution. I f zx and z2 are two roots of <£(») = a, then ^ and 22 

must each have a factor not common to the two except when 
one is an odd number and the other is twice that odd number ; 
and hence, except in this case, their lowest common multiple is 
greater than either of them. Now if zv z2, • • -, z. are all the 
roots of <f>(z) = a, we have by Fermat's theorem the congruences 

xa = l(mod zx), x
a == l(mod z2), • • -, x

a = l(mod zt), 

where in each case x is prime to the modulus involved. Now 
if L is the lowest common multiple of zv z2, • •., z. and x is 
prime to L, we have 
(1) a f = l(mod Z), 

where L is greater than any number whose totient is a except 

*Carmichael, BULLETIN, vol. 13, p. 241. 
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when the equation </>(s) = a has only the two solutions 
z=L, z = \L* Hence, 

THEOREM. Except when n and ^n are the only numbers whose 
totient is the same as that of n, the congruence x^n) = 1 holds for 
a modulus which is some multiple of n. 

A working method for finding such a modulus is the follow­
ing : 

Set <p(n) = a, for convenience. Separate a into its prime 
factors and find the highest power of each prime p contained in 
a such that <j>(pa) is equal to or is a factor of a. Suppose that 
the following primes are found : pfTpt2> •••>?"'• Then write 
out all the divisors of a and take every prime a such that q •— 1 
is equal to any one of these divisors, but q =j= any p ; and say 
we have qv q2, • • •, qk. Then set 

(2) ^ i f = ^ . . . p ? M 2 . . . f c 
Then evidently 
(3) Xa== l(mod J?f), 

when X is prime to M. (It should be noticed that M may be 
a multiple of L in congruence (1).) 

As thus defined, I f is a definite function of a ; say M = M (a). 
For every odd value of a, except a = 1, we have M (a) = 1, 
as the reader may readily verify. Some even values of a give 
also M {a) = 1. There follows a table giving the value of 
M (a) for each a for which M^ 1 up to a = 150. 

a 

2 
4 
6 
8 
10 
12 
16 
18 
20 
22 
24 
28 
30 
32 
36 
40 
42 
44 
46 

M{a) 

12 
120 
252 
240 
132 

32 760 
8 160 
14 364 
6 600 ! 

276 
65 520 
3 480 
85 932 
16 320 

69 090 840 
108 240 
75 852 
2 760 
564 

a 

48 
| 52 
54 
56 
58 
60 
64 
66 
70 
72 
78 
80 
82 
84 
88 
92 
96 
100 
102 

M{a) 1 

2 227 680 
6 360 
43 092 
6 960 
708 

3 407 203 800 
32 640 
388 332 
9 372 ' 

10 087 262 640 
948 

18 400 800 
996 

285 962 040 
491 280 
5 640 

432 169 920 
3 333 000 

25 956 

a 

104 
1 106 
108 
110 
112 
116 
120 
126 
128 

1 130 
1 132 
136 
138 
140 
144 
148 
150 

M{a) 

12 720 
1 284 

22 265 704 680 
33 396 

26 740 320 
7 080 

279 390 711 600 
549 092 628 

65 280 
17 292 

50 483 160 
10 960 

1 646 316 
13 589 400 

342 966 929 760 
17 880 

12 975 732 
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I I I . The Solutions of $(z) = a. 

I t is desirable to have a general method for finding all the 
solutions of 

(f)(z) = a 

for any given a. The method used in Note I I for finding M 
in congruence (1) is suggestive, and we may formulate a rule 
thus : 

Find M as in Note IL Evidently, the solutions of <f>{z) == a 
will all be factors of M. Then examine all the factors of M and 
retain each one whose totient is a. 

ALABAMA PRESBYTERIAN COLLEGE, 
ANNISTON, ALABAMA. 

T H E SOLUTION O F BOUNDARY PROBLEMS O F 
L I N E A R D I F F E R E N T I A L EQUATIONS 

O F ODD ORDER. 

BY PROFESSOR W. D. A. WESTFALL. 

E. SCHMIDT 1 has studied the set of linear integral equations 
with non-symmetric matrix 

(1) 4>ls) = \ ÇK(%, t)fH)dt, fis) = X, f*K(t, sftjfidt, 

and has shown that, if there can be found for a function f(x) a 
continuous function h(x), such that 

(2) ƒ 0*0= ( K{x,t)h(t)dt, 
*J a 

then 

(3) /(*) = E^fW*(0^ 
where </>t runs over a complete set of solutions of (1) which 
have been normalized and orthogonalized, i. e., 

(4) XW-{J ; *;>;} 
*Math. Annalen, vol. 63, p. 459. 


