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to Weierstrass, with the totality of those functions 8y of class
C’ which vanish at 2, and @, and satisfy the relation 8K = 0.
The proof of this lemma — which is an essential step in the
chain of conclusions, and whose omission forms a serious gap
in the older theory — constitutes the second difficulty.
Neither of these difficulties occurs in the proof which we
have given above.

FREIBURG, i. B.,
November 19, 1908.

NOTES ON THE SIMPLEX THEORY OF
NUMBERS.

BY PROFESSOR R. D. CARMICHAEL.

(Read before the American Mathematical Society, October 31, 1908.)

I. Continued Product of the Terms of an Arithmetical Series.

1. Let a and ¢ be two relatively prime positive integers and
form the arithmetical series

va +¢ (=0,1,2,.-.,n—1).

If we inquire what is the highest power of a prime p contained
in the product

x=n—1

Il (wa+¢), a 0(mod p),

=0

we shall find that the general result takes an interesting form.
The solution of the problem may be effected in the following
manner :

Evidently there exists some number @ such that xa + ¢ is
divisible by p. Let i be the smallest value of « for which this
division is possible, and let ¢, be the quotient thus obtained.
Using the notation

(1) H{y}

to represent the index of the highest power of p contained in y,
we will show that

@) H{El (wa +c)}= H{I:I (wa + cl)}+ o +1,
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—_1—i
61=[n P ll]

is the largest integer not greater than (n — 1 —¢,)/p. In order
to prove (2) we have only to notice that in the product of its
first member only factors of the form

where

(mp +i)a + ¢

contain p and that the quotient of the division is always of the
form

ma + ¢,

and that e, is the highest possible value of m. Performing the
same operation on the H-function of the second member and
continuing the process, we should finally arrive at a number
which is simply the index of the required power of p.

In order to write this result in a convenient form let us
define a suitable notation. Let i be the least integer such
that 4a + ¢,_, contains p and let ¢, be the quotient of this
division. Ior uniformity, set ¢ = ¢,and n — 1 = ¢, Further,

let ¢ be defined by
e_;—1
3 [J:l__r] —c.
© =% ]=e,

Also let ¢ be the first subscript for which

ct(a + ct)(za + Ot) e (eta' + ct)

does not contain the factor p. Then the preceding result may
be written thus

Z=n—1 } r=t—1

e 7 T o+ o) [ =3 (0, + 1),

=0
Since 0=¢ =p — 1, as is evident from the definition of i,
we may deduce from (3) the following inequalities :

[2= =1 =, =[]
P g P
Hence

e . +1 e ,+p
5 _f_ql___]ée 1§[.LJ_~]‘
%) [t =e 4 12| =0
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This gives _ }
[;—; éel+1§Fn;1 +1,
[ n] _ 1<'n——1_
2l I I I
[ ] [n— 1]
F .§63+1§ ‘p3 +l,

Taking the sum of these inequalities, we have by (4)
n n] [n w=nl
o )+ (Bl 3]+ = T+ 0]
n—1 n—1
é[ P ]+[ ? ]+"'+R(n—])’

where R (n — 1) is the index of the highest power of p not
greater than n — 1.

This result takes different forms according as n is or is not a
power of p. If nis a power of p, we have evidently

@ =15 ]+

for every p* equal to or less than n. Remembering that

W hen n —-_'p )
p pz o p ’

and using equation (7) in connection with inequality (6), we
have

(8) H{xﬂﬁl(wa + ¢,) } =Z~E~i, n = ph

=0

‘When n is not a power of p, it is evident that
n n—1
9 — | = .
@ b
Suppose now that

(10) n = Shph + 81;—1ph~1 + -+ 5120 + 80: Sh =+ 07
and at least one other & is not zero. Employing (9) and the
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well-known formula

[n]_,_l:n:l ”.=n_(8h+8h—1+"'+81+Bo)

P Z? p—1 4

we may write (6) as follows :

n— (8, + - +3+9) {x:n—l }
- =H ,
(11) p—1 II @a+ )
Sh+n_(8h+"'+81+8o)
= P i

The inequalities in (11) confine the value of A in narrow limits
which are easily calculated.

2. In the series za + ¢, it may happen that the first « for
which @a + ¢ is divisible by p will give ¢ as the quotient of
this division. Then in the preceding discussion all the ¢’s are
equal ; and then also all the ¢’s. Dropping subscripts from ¢
and ¢ and making repeated use of equation (3), we have

'n—1—1
e = —— |,

! P

[e,—3 _[eap—ip] _ n—1—i—1p
el Rl el el el Rl

_ez—l] ’ezpz—ipz] [n—l—i—ip—i]f]
e, = = ———— =
3 | P | p3 p3 )

If we add one to each member of each of these equations and
take the sum of the results; then further, if we replace the re-
sulting first member by its value taken from (4), we have

(Mo |- =5

=0
n—1—i—1i 2 n—1—i—ip—ip*+p°
+[ 2p+p]+[ 1 l,f zp+p]+.”.
g P
3. If a =c =1, equation (12) takes a very simple form.
For this case 7=p — 1. The result is the well-known theorem
that the highest power of p contained in n! is that whose

index is
n n _n—(sh+-~+sl+so)
[§]+[ﬂ]+'"— p—1 ’

12)
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where
n=g8p"+ 8_ P+ -+ 8p+s,

4. If a = 2 and ¢ = 1, equation (12) takes a special form of
considerable interest. The terms of xa 4 c are the natural odd
numbers in order, and p is an odd prime. It is evident that
t=134(p—1). Therefore

n—1—i—ip.-  —ipf-t 4 pf
PP

2n—2—20—2p—..-—20pP~142pP 1 ["'2n—14pF
2pk o 2pP ’

Then (12) becomes

H{1-3-5...(2n—1)}=[2"“2#]

2n — 1 + p* on — 1 + pd
[ R

I1. An Extension of Fermat’s Theorem.

It will be shown that the congruence
wt™ = 1(mod n),

where ¢(n) is Euler’s ¢-function of n, is still true when the
modulus is a multiple of n formed in a definite way, # being
prime to the new modulus.

It has been shown * that ¢(z) = « has always more than one
solution. If z and 2, are two roots of ¢(2) = a, then 2z, and 2,
must each have a factor not common to the two except when
one is an odd number and the other is twice that odd number ;
and hence, except in this case, their lowest common multiple is
greater than either of them. Now if 2, z, ---, 2, are all the
roots of ¢(z) = a, we have by Fermat’s theorem the congruences

2* = 1(mod 2,), #* = 1(mod z,), - - -, 2" = 1(mod ),

where in each case @ is prime to the modulus involved. Now
if L is the lowest common multiple of z, z, ..., 2, and @ is
prime to L, we have

1) x® = 1(mod L),

where L is greater than any number whose totient is a except

* Carmichael, BULLETIN, vol, 13, p. 241.
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when the equation ¢(z) =a has only the two solutions
2=L,z=3}L. Hence,

THEOREM. Faxcept when n and in are the only numbers whose
totient is the same as that of n, the congruence x*™ = 1 holds for
a modulus which is some multiple of n.

A working method for finding such a modulus is the follow-
ing :

Set ¢(n) = a, for convenience. Separate @ into its prime
factors and find the highest power of each prime p contained in
@ such that ¢(p*) is equal to or is a factor of a. Suppose that
the following primes are found : p@i, p%, ..., py. Then write
out all the divisors of a and take every prime ¢ such that ¢ — 1
is equal to any one of these divisors, but ¢ 4= any p ; and say
we have ¢,, ¢, - -+, ¢, Then set

@ M= pips - PF 0% 9
Then evidently
3) X* = 1(mod M),

when X is prime to M. (It should be noticed that M may be
a multiple of Z in congruence (1).)

As thus defined, M is a definite function of @ ; say M = M (a).
For every odd value of a, except a = 1, we have M (a) =1,
as the reader may readily verify. Some even values of a give
also M(a)=1. There follows a table giving the value of
M (a) for each @ for which M <= 1 up to a = 150.

a M(a) a M(a) a M(a)

2 12 48 2 227 680 104 12 720
4 120 52 6 360 106 1 284
6 252 54 43 092 108 22 265 704 680
8 240 56 6 960 || 110 33 396
10 132 58 708 112 26 740 320
12 32 760 60 | 3 407 203 800 116 7 080
16 8 160 64 32 640 || 120 279 390 711 600
18 14 364 66 388 332 || 126 549 092 628
20 6 600 70 9 372 || 128 65 280
22 276 72 |10 087 262 640 130 17 292
24 65 520 78 948 132 50 483 160
28 3 480 80 18 400 800 || 136 10 960
30 85 932 82 996 138 1 646 316
32 16 320 84 285 962 040 || 140 13 589 400
36 69 090 840 88 491 280 || 144 | 342 966 929 760
40 108 240 92 5 640 || 148 17 880
42 75 852 96 432 169 920 || 150 12 975 732
44 2 760 100 3 333 000
46 564 102 25 956
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III. The Solutions of ¢(z) = a.

It is desirable to have a general method for finding all the
solutions of
#e) = a

for any given @. The method used in Note II for finding M
in congruence (1) is suggestive, and we may formulate a rule
thus :

Find M as in Note I1. Evidently, the solutions of ¢(z) = a
will all be factors of M. Then examine all the factors of M and
retain each one whose totient is a.

ALABAMA PRESBYTERIAN COLLEGE,
ANNISTON, ALABAMA.

THE SOLUTION OF BOUNDARY PROBLEMS OF
LINEAR DIFFERENTIAL EQUATIONS
OF ODD ORDER.

BY PROFESSOR W. D. A. WESTFALL.

E. ScamipT' has studied the set of linear integral equations
with non-symmetric matrix

1) $=x f K (s, Owit)dt,  (s) =X, f K (b, 8)0)dt

and has shown that, if there can be found for a function f'(x)a
continuous function A(x), such that

@ 7@ = [ K onod,

then
® 7@ = £ [y,

where ¢, runs over a complete set of solutions of (1) which
have been normalized and orthogonalized, 1. e.,

R

* Math. Annalen, vol. 63, p. 459.




