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A SET OF CRITERIA FOR THE SUMMABILITY 
OF DIVERGENT SERIES. 

BY PROFESSOR WALTER B. FORD. 

(Read before the Chicago Section of the American Mathematical Society, 
April 9, 1909.) 

Introduction. 
1. If the series 

(1) u0 + ul + u2+ \-%+ ••• 
be divergent but of indeterminacy r in Cesàro\s sense, its sum 
is defined by the relation 

ro\ o _ r /(w> r K +f(n " " 1 > r)*i + ' ' 'f(l> r ^ i + ^ ° ' *)*» • 
^ * - | Ï Ï / ( n , - r ) + / ( % - l , r ) + . . . / ( l , r ) + / ( 0 , r ) ' 

where 

f(n, r ) = r ( r + l ) - - - ( r + w—l)/w! ( r S l ) ; ^ = 1 ^ + ^ + . . . +uw 

and where r is taken as the smallest integer for which the indi
cated limit exists. Since it is a necessary condition for inde
terminacy r that 

i™0?)-°* 
it follows that but few series (1) are summable by (2) for any 
value of r however large, and hence that summability in 
Cesàro's sense is of relatively rare occurrence. I t is therefore 
proposed in the present paper to show how an extended set of 
criteria, of which (2) affords a special type, may be constructed 
so as to provide an ascending scale of sharpness for the testing 
of summability. We shall show that such criteria may be con
structed so as to bear a close analogy to the familiar logarithmic 
criteria for testing the convergence or divergence of a given 
series. 

Formulation of Problem and Theorem. 

2. In order to state the problem in more accurate terms we 
recall that the essential characteristic of the sum formula (2),» 

*Cf. Bromwich, Infinite Series, p. 318 (1908). 
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or of any other general sum formula, is that it shall give n^s
n 

whenever the series (1) is convergent. Also we note that by 
increasing r in (2) we increase the order of infinitude of its 
denominator when n == oo and thereby increase the range of 
applicability of the formula. The following problem, which is 
the one we shall undertake, is therefore suggested : To deter
mine an infinite sequence of functions 

(3) / o K r), f{n, r), f2(n, r), • • -, fp(n, r), • • • 

each dependent upon the variable n and the parameter r and 
having the following characteristics : 

n 

(a) l im=£ lima. 
M=" I />-v) n=x 

whenever the series (1) is convergent ; 

n,\ *t \ r(r+l)--.(r + n—l) n v 

\P) fo(n> r) ^ ~̂  f ' ( c a s e °* Cesaro); 
n n 

Z fP(m, r) £ fP(m> r) 
(c) l i m - ^ 0, (d) Um-==? 0. 

m=0 

Any function of the sequence (3) will thus furnish an infinite 
subset of criteria having an increasing range of applicability 
with increasing r [see (c)], while in the case of a series (1) for 
which a given function of the sequence gives no meaning to the 
first member of (a) for any value whatever of r, we may at 
once obtain more powerful criteria by increasing >̂ [see (d)] . 
Moreover, by virtue of (6) the extended set of criteria thus 
obtained will form a generalization of Cesàro's original for
mula (2). 

In this connection, we shall now establish the following 
THEOREM. AS a function f (n, r) satisfying (a), (6), (c), (d) 

and therefore furnishing a set of criteria of swwmahility for diver
gent series we may take 

* n 
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where log0n = n and logp n = log log •. • log n (p times) ; 
J > - 1 , 2 , 3 , . . . . 

3. Proof. We shall first establish the following lemma : 
Let c0, cv cp • • •, cn and (?0, (7X, C2, • • • , Cn be two sequences of 
quantities of which the elements of the latter are real and posi
tive. If £?„ cn = g and 

(4) lim C A +
t A ~ 1 + , ' " + , nm = °> m =find integer ^ 0, 

W=oo ^n + ° n - l H r ° 0 

then 

(ö) i™ oB + on_1 + ... + o0 ^ 
In fact we shall then have cn = g + en ; „'jf̂ , eB = 0, so that 

we may write 

where 
Onc0 + CUc, + • • • + C„_mcm- g( Cn+C„_, + ....+ C„_ J 

Jf(n) -
cn + cn_l + ... + q) 

m~ cn + on_1 + ... + c0 

But if (7 represent the largest of the quantities | o01, | ox | , 
' "> \Gm\> w e shall bave 

and hence ^ X(n) = 0 by (4). 
Again, corresponding to an arbitrarily small positive quan

tity e we shall have 

= € ( i _ n T n-i f — - " ^ P h m > me = constant, 
\ ('n + °n-l H 1" °0 / 

and hence J1^» Y(n) = 0. Thus the lemma becomes established. 

*This is also true when each of the quantities C0, C,, • • •, Cnis a function 
of n, other conditions remaining the same, and the proof which follows will 
be found to apply equally to such cases. 
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In particular, let us now take 

Cn=— ^ y n^~)-) r~ integer ̂ 19 

and place cn = sn, where sn represents the sum of the first n + 1 
terms of (1). Then condition (4) is satisfied and (5) is at once 
seen to give the sum formula (2) of Cesàro. More generally, 
if Vn be any function of n such that the difference Vn — Fw_1 

never decreases as n increases (n sufficiently large), while at the 
same time 

V — V 
(6) lim » v

 n- = 0, 
n—<*> 

we may obtain in like manner a sum formula for the series (1) 
by taking Cn = Vn — Vn_v In fact, we shall then have 

so that condition (4) becomes satisfied, with which (5) yields 
the formula mentioned. In the special case leading to formula 
(2) it will be observed that 

n\ V - K » ' + l ) - - - ( r + tt)a v _ v _ r(r+l)-.-(r+n-l) 
92 ! 

so that 
V — F 

r + n 

We turn our attention therefore to the function Vn defined by 
a general equation of the type 

F - F 
(8) » - ' 4 . ; lim 4 , - 0 . 

A solution of this equation which reduces to (7) when 

r 
A = 

r -f n 
(case of Cesàro) is 

(») 
F-S(I4T,)-
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Let us now consider the function Vn obtained by taking 

A = - — T T > An=—A ( n S 2 ) . 
1 »• + r n r + log n v J 

This function will necessarily satisfy (6) because of (8) and will 
be such that Vn — Vn_l is an ever increasing function of n (n 
sufficiently large) since the result of increasing n by 1 is to* 
multiply Vn - Vn_x by 

éa±l Z«±i _ r + l 0 g n ^ log fa + r) > -, 
An ' Vn ~ l o g ( n + l ) > l o g ( n + l ) - 1 -

Thus we reach the sum formulas 

( m . l i m / . (« . r)s0 + ƒ > - 1, r> , + •. • + / , (0 , r)s„ 
{ ' n™' JP{n,r) +fp(n-l,r) + ...+ff(0,r) ' 

where 

Un,r) = Vn-Vn 1== 2£ + H£Mj2&f» b = 0 , l > 
Jr\ > j n n-i r + log^n;^; log w v/^ ' ; 

with log0 n = w (case of Cesàro) and logx n = log n. 
More generally, by taking 

,4 = _ ^ — -4 = 
i r + 1 ' n r + log 

where log0 n = n and logp n = log log • • • log n ( p times) we 
are led to a function f(n, r) defined by the formula 

(») A C ^ - ^ ^ S 5 1 ^ 2 (p"°'1'2'*->• 
which function satisfies conditions (a) and (6) of § 2. 

In order to complete the proof of the theorem it remains 
therefore but to show that the function fp(n, r) defined by (11) 
satisfies (c) and (d). 

Recalling that 

n n / 1 \ _n_ 

Z / ^ r J - I I f - 7 )~(r+ 1)11 
m=0 n=L \ 1 — ^ n / w=2 

r + logp n 
log n 9 
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we have 
n 

no\ V* tt , i\ f + ï ü r + l + I o f c » ' 
(12) 2 - /.0»i *" + 1) 

r + 1 

and since the series 

±lff(i L__\ 

~ r + 1 + logp n 
is divergent, it follows from the well-known tests for conver
gence and divergence of infinite products that the last member 
of (12) approaches the limit 0 when n = oo, with which condi
tion (c) becomes satisfied. 

Again we have 
n 

£ / y ( W > / ) _ A (r + hgpn)\ogp+ln _ • 

± ƒ +1(m, 1) " "=2 (1 + l0&+l U) l0& " " «=* 

where 

_1 + logp+1 n r + logp n 

* 1 
r + logp 7i 

For all values of n we thus have 

'vHfe) o 
a, > ;—-^ N/1 , ! v > , - : c = constant 
*n (r + logp n)(l + log;+1 n) logp+1 n 

and hence the series 
00 

is divergent, with which condition (d) becomes verified, thus 
completing the proof of the theorem. 


