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TAUTOCHRONES AND BRACHISTOCHRONES. 

BY PROFESSOR EDWARD KASNER. 

(Read before the American Mathematical Society, February 27, 1909.) 

I N the simplest case of a particle acted upon by gravity, the 
tautochrone problem, solved by Huygens in 1673, and the 
brachistochrone problem, solved by Jean Bernoulli in 1697, 
give rise to the same curves, namely, cycloids with horizontal 
bases and concavity upwards. In the case of a general field of 
force the two problems lead to distinct systems of curves. Their 
differential equations, each of the third order, are given in the 
first section of this note. In § 2 it is shown that the only force 
besides gravity for which the two systems coincide is the central 
force varying directly as the distance from the origin. If the 
force generating the brachistochrones is not required to be the 
same as that generating the tautochrones, then a third case of 
duplication is possible (§4). Incidentally, a class of forces 
involving eight parameters and related to infinitesimal collinea-
tions presents itself (§ 3) ; they are the only fields of force for 
which every straight line of the plane is a tautochrone. 

§ 1. General Equations, 

We consider a particle of unit mass moving in the plane 
under a force whose rectangular components are cj)(x, y), ^r{x, y). 
With reference to an arbitrary curve the normal and tangential 
components are 

The condition for a tautochrone is that the motion along the 
curve be harmonic, that is, 

(2) T=K(s-s0), 

where /c is a constant * and s — s0 denotes the arc reckoned 

* For an actual tautochrone K must be negative. The differential equation 
(3) applies also when n is positive. Such curves may be termed virtual 
tautochrones. They are the actual tautochrones of the reversed force. A 
similar remark applies to trajectories, brachistochrones, and catenaries. 
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from a fixed point of the curve, the center of the tautochronous 
motion. Differentiating twice with respect to s, we have, as the 
equation of all the tautochrones, 

(3) r „ = 0 . 

The brachistoohrones may be found most readily from Euler's 
theorem on pressure, which gives 

v2 

(4) - - - N, 

where v is the speed and r the radius of curvature. 
Differentiating both sides with respect to s, and remembering 

that 

w "•-%-=T-
we find the equation of the family of brachistochrones to be * 

(6) 2T+rN9 + Nra = 0. 

Equations (3) and (6) when expanded are seen to involve 
third derivatives of y with respect to x} so that each defines a 
triply infinite system of curves. 

To obtain the results in more explicit form we introduce an 
auxiliary vector, completely defined by the given field of force, 
namely, the space derivative of the force (considered as a vec
tor). The rectangular components of the new vector are 

u ** ^î + y" *' VTT7 
and its normal and tangential components are 

(8) 
1 / 1 + / 1 + 2 / 

,2 ' 

= 4>. + y'1r. = $* + {4>y+ txW + ^/ 
ri+y'2 i + / 

*This result, like Euler's theorem, applies only to conservative forces. 
Apparently the theory of brachistochrones for non-conservative fields has not 
been investigated. The system in this case consists in fact of oo4 instead of 
merely oo8 curves. Since the tautochrone system always contains oo3 curves, 
such forces need not be considered in the problems of § 2 and § 4. 
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The following noteworthy relations may be derived without 
difficulty : 

T N 
(9) ^ = ? ï - 7 , T9-% + - . 

We require finally the space derivatives of 91 and %y which 
may be written in the form 

(10) %.-% + *, %, = ^ + ^ 

where 

«> _ *« + ( 2 ^ - <t>Jy' + (fm - 2 < U / - KyA 

(i+y'y 

(11) 

_ fy-(f>x-2(<j>v + ^ > ' + (<k-f„)/ 
1 + 2/ 

£ , -

(i + y'2f 

2 i . /2 

1 + 2/ 
The functions <f>}yfr depend only on the position of the particle ; 

the auxiliary functions N9 T, % % 3lv %, %v £2 , defined 
above, depend also upon the direction of motion ; finally, Ny 

Ts, yis, X, depend upon the curvature of the path. 
Making use of (9) and (10), we may reduce our equations 

(3) and (6) to explicit form, and obtain this result : 

The general equation of the system of ta,utochrones is 

(I) Nrs = X,r2+ (X2+ %l)r - T, 

while that of the system of brachistoehrones is 

(II) Nrt=* - 9?r - T. 

From these equations we may deduce the general geometric 
properties of the two systems. We note merely that for tau-
tochrones r9 (the rate of variation of the radius of curvature 
per unit of arc) is a quadratic function of r, while for brachis
toehrones it is a linear function of r. The results (I) and ( I I ) 
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are of course differential equations of the third order with re
spect to y as a function of x. The usual notation may be 
obtained by substituting 

(m rAi±ù. r W-(i+yy 
but the above intrinsic forms are more convenient in the fol
lowing. 

We note in passing that for any field of force the equation 

(13) A > = ~ î î r + w î ; 

involving an arbitrary parameter m, includes the following four 
distinct systems of curves of physical interest : brachistochrones 
when m = — 1, trajectories when m = 3, catenaries when 
m = 2, and velocity curves when m = 1. For all values of 
m the curves may be obtained by requiring that the pressure 
shall vary directly as the normal component of the external 
force. No cases of duplication, beyond those already men
tioned, are found by comparing these systems with tauto-
chrones or with one another. 

§ 2. The Duplication Problem f or a Single Field, 

We proceed to find the forces for which the brachistochrone 
system coincides with the tautochrone system. The conditions 
expressing the equivalence of equations (I) and (II) are 

(14) %, = 0, 

(15) %2 + 2m = 0. 

Expanding the latter, we find 

(15') ^ + 3 ^ = 0 , fy-4>x=0, 3 * , + * „ = 0 . 

The solutions are easily found to be 

(16) </> = ex + a, yjr = cy + 6, 

where a, 6, c are arbitrary constants. No new restrictions are 
imposed by (14). By a simple change of axes and scale the 
field (16) may be written in one of these two canonical forms, 

(17) £ = 0, t = l > 

(18) <j) = x, ir=*y. 
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The only types of force for which the tautochrones coincide with 
the brachistochrones are represented by (17) and (18). In the 
first type the force is constant in direction and intensity (gravity) ; 
in the second type the force is central and varies directly as the 
distance from the center (elastic law). 

The system of curves in the first type consists of cycloids 
with horizontal bases ; in the second type the curves are hypo-
cycloids and epicycloids, including as limiting cases equiangular 
spirals, all having the origin as center. 

§ 3 . - 4 Class of Forces Related to Collineations. 

We now determine those forces for which the right hand 
member of the general tautochrone equation (I) is linear in r.* 
The condition for this is 3^ = 0, which decomposes on expan
sion into the set of partial differential equations 

6 = 0, 26 + ir = 0, 
/-i Q \ ~xx ' 'xy ' T xx ' 

^ ) 6 + 2i|r = 0 , i/r = 0 . 
ryy 1 T xy ? Y yy ^* 

The integration of this set may be carried out without diffi
culty ; but the calculation may be avoided by noticing a simple 
connection with the equations arising in the determination of 
infinitesimal collineations. If an infinitesimal transformation, 
represented symbolically by 

hx+ Vdy> 

is to be projective, then the well known conditions are 

Vxx = 0, 2r),y-Cxx=0, 

lyy *xy ? *yy v * 

This is converted into our set (17) by replacing £ by yfr and y 
by — cf). Hence the solutions of (17) are 

- $ = b + ex+gy + hxy + ky2, 

yfr = a + cx + dy + hx2 + hxy, 

involving eight arbitrary constants, the notation being taken in 
agreement with Lie-Scheffers, Continuierliche Gruppen, page 
24. Our result is then : 

* The linear form is equivalent to property J of a system of dynamical 
trajectories. See Trans. Amer. Math. Soc, vol. 7 (1906), p. 405. 
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If a system of tautochrones is to have the property that rs (the 
rate of variation of the radius of curvature per unit of arc) is a 
linear function of r (the radius of curvature), then the field of 
force must be of the class (20). These fields are characterized by 
the fact that the related infinitesimal transformation 

(21) _ _ +&-+k 
is a Gollineation. 

I t follows that the lines of force, 

cm dy'-* 

have for orthogonal trajectories a system of anharmonic curves 
( W curves). Of course this property is not characteristic, since 
it describes only the direction of the force, not its intensity. 

The forces (20) arise most concretely in response to this 
problem : In \Vhat cases will every straight line be a possible 
tautochrone ? * 

For a straight line we have r = oo, and r = 0. If (I) is to 
be satisfied by these values, then Xv the coefficient of r2, must 
vanish. The same result is obtained by reducing (I) to the 
form 

(23) / ' = %y + y"fx{x, y, y') + y'%(x, y, y), 

and imposing the condition that y"= 0 shall be a particular 
integral. 

The class of forces (20) is thus completely characterized by the 
fact that every straight line of the plane is a possible tautochrone. 

If the force (20) is required to be conservative it is found 
that the coefficients must satisfy the relations 

(24) /i = 0, & = 0 , c+g=0. 

The corresponding collineation then becomes an affine trans
formation leaving areas invariant. The components of the 
force are of the linear form 

<f> = — b — ex + cy, yfr = a + ex + dy 

and the work function is 

* Mr. Reddick has shown that in space of three dimensions this problem 
leads to a class of forces involving twenty parameters ; the relation to 
collineations is therefore peculiar to the plane. 

file:///Vhat
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(25) W' = — bx + ay + cœy — ^ ^ 2 + \dy2. 

The only conservative forces for which every straight line is a 
tautochrone are those in which the potential is a quadratic func
tion of x, y. 

The lines of force are then the orthogonals of a system of 
homothetic conies. Such forces are of importance in connec
tion, for example, with the general theory of motion about a 
position of equilibrium. 

§ 4. The Duplication Problem for Two Fields. 

When will the system of oo3 tautochrones connected with 
one field of force coincide with the system of oo3 brachisto-
chrones connected with a second field ? We denote the com
ponents of the first force by <f>, yjr, and those of the second force 
by </>*, ̂ r*, so that the differential equations of the two systems 
considered are 

(26) Nra = %Yr + (%2 + 3l)r - T, 

(27) N*ra = - 9î*r - T*. 

We observe that a necessary condition for equivalence is 3^ = 0; 
hence the first force must be of the type (20). The additional 
conditions to be satisfied are 

y* y 
N*~ N' 

£ 2 +9i 
N ~ 

m* 
N*' 

(28), (29) 

From the first of these, we find that the ratio of yfr* to </>* must 
be equal to the ratio of yfr to <£. We may therefore write 

(30) * * = / > & ^ * = />f, 

where p is an unknown function of x, y. A short calculation 
shows that, in consequence of (30), 

m * 31 , <TX + y<r,i 

Equation (29) may then be written in the form 

(32) £ 2 + 29? + Nas = 0. 

Expanding this in powers of y', making use of the known form 
(20) of <f> and yfr, and equating coefficients to zero, we find 

(31) l^ = N+^=7f ("-HP)-
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3c — g + 5hx + ky -f ^rax = 0, 

(32') 4(d + e+kx + hy) + ftry - <K = 0, 

3g — e + hx + dky — ( ^ = 0. 

The unknowns are now the eight coefficients involved in (20) 
and the function a. Elimination of <rx and a gives 

4>2(3g — G + hx + bky) + 4^\jr(d + e + kx + hy) 

^ ' + ^2(3c - g + 5Aa? + %) == 0. 

By means of the coefficients of the highest powers here in
volved, namely, x5 and y5, we find that h and k must vanish. 
The last equation thus simplifies to 

(33') (Sg - c)tf>2 + 4{d + e)4>ir + (3c - g)f = 0, 

where 

(34) </> = — b — ex — #2/, ^ = a + ox + cfa/. 

We now divide the discussion into two cases : 
Case 1°. If the coefficients Sg — c, 4{d + e), 3c — g appear

ing in (33') all vanish, then c = 0, g = 0, d = — e, and we obtain 
the form (16) of § 2. In fact, under these conditions, equa
tions (32') show that both ax and or will vanish, that is, v and 
hence p will be a constant, that is, the two fields will coincide. 

Case 2°. Under the contrary assumption, we see from (33') 
that the ratio of yjr to c/> must be constant. This means that 
the force has a constant direction, which we may without loss 
of generality assume to be the direction of the y-axis. The 
component c/> will then vanish, so that, from (34), 

b = e = g = 0. 

Equation (33') then gives 3#-—c = 0, so that c also must 
vanish. Our force thus becomes 

c/> = 0, yjr = a + dy. 

If d vanishes, this becomes the type (17). Otherwise, it may, 
by a change of axes and scale, be reduced to the form 

(35) </> = 0, ^ = 2/. 

Substituting these values in (32') wTe find that the equations 
for the unknown function a- are consistent and give 

a = - 4 log y, 
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so that p, the factor for converting the first field into the second 
field, is y~*. Hence the second field is 

(36) <£* = 0, ^ * = y~\ 

In (35) the force varies directly as the distance from the x 
3,xis, while in (36) the force varies as the inverse cube of that 
distance. 

The only cases in which a system of tautochrones is also a sys
tem of brachistochrones are these three : 

1°. The tautochrones and the brachistochrones of the uniform 
field <£ = 0, yjr = 1 coincide. 

2°. The same is true of the elastic field <f> = x, yfr == y. 
3°. The tautochrones of the field cj> = 0, ^ = y coincide with 

the brachistochrones of the field <£* = 0, yfr* = y~*. 
All these fields are conservative. 
COLUMBIA UNIVERSITY, N E W YORK. 

D E G E N E R A T E PENCILS O F QUADRICS CON
NECTED W I T H YlX\n CONFIGURATIONS. 

BY DR. W. B. CARVER. 

(Read before the American Mathematical Society, December 31, 1908.) 

I N a previous paper * the author discussed a certain pencil 
of quadric spreads associated with the configuration rjj^4>w in 
space of n dimensions. The r^+l, » contains n + 4 configura
tions r^+3 n? and with each of these is associated a quadric 
spread with respect to which its points and Sn_x

ys are poles and 
polars. In the case of a proper T%+\tn9 i. e., one whose points, 
lines, planes, • • -, and #n_/s are all distinct, it is evident that 
the associated quadric spread cannot degenerate into a cone, f 
Hence, for a proper T%+ln, the individual spreads of the asso
ciated pencil cannot be degenerate ; but the question naturally 
arises as to whether the pencil itself, or the quartic (n — 2)-way 
spread through which the quadrics all pass, may be degenerate. 
I t is the object of this paper to answer this question for the 
cases n = 1, 2, and 3. 

* " T h e quadric spreads connected with the configuration r ; j j | r " ' 
Amer. Jour, of Mathematics, vol. 31, pp. 1-17 (January, 1909). 

f That is, if the quadric spread be represented by a quadratic equation in 
n 4-1 homogeneous variables, the discriminant of this equation must not 
vanish. 


