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AN A P P L I C A T I O N O F T H E NOTIONS O F "GEN
ERAL A N A L Y S I S " TO A PROBLEM O F T H E 

CALCULUS O F VARIATIONS. 

BY PROFESSOR OSKAR BOLZA. 

(Read before the Chicago Section of the American Mathematical Society, 
April 8, 1910.) 

T H E object of the following note is to give an illustration of 
the unifying power of Professor E. H. Moore's methods of 
" General Analysis " * by showing that a certain theorem of the 
calculus of variations and a certain theorem of analytic geome
try are special cases of one and the same theorem of general 
analysis. 

The theorem of the calculus of variations is the so-called 
fundamental lemma for isoperimetric problems,f viz., 

THEOREM I . "If 

J (*X2 

I [M0(x)V(x) + N0(x)v'(x)-]dx = Q 

for all functions i)(x) which are (a) of class C on [a^œj, 
(b) vanish at xx and x2, and (c) satisfy the m conditions 

(2) pit,) m P [M.{x)r,{x) + Nlx)rj'(x)] dx = 0 

( i = 1, 2 , . . . , ro) , 

then there exist m constants cv c2, • • •, cm such that 

(3) r0(v) + <V,0?) + °2^(v) + • • • + °J*m(v) = 0 

for all functions 7](x) satisfying conditions (a) and (&). 
The functions M(x), N(x) are supposed to be continuous on 

The theorem of analytic geometry is the well known 

* Compare E. H. Moore, 4* On a form of General Analysis with applica
tions to linear differential equations and integral equations,'' Atti del IV 
congresso internazionale dei Mathematici, vol. 2, p. 98; and " Introduction 
to a form of General Analysts," in The New Haven Mathematical Collo
quium, Yale University Press, New Haven, 1910. 

f Compare for instance Bolza, Vorlesungen über Variationsrechnung, p. 
462, footnote 1, and the references given there. 
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THEOREM I I . " If in a plane and in homogeneous coordinates, 

(1') U0 = A0x+ 11^+0^ = 0 

is the equation of a straight line passing through the point of inter
section of the two non-coinciding * lines 

(2') U^Ap + Btf+Cf-O, ü2 = A,x + Bj)+Gf = 0, 

then there exist two constants \ v X2 such that 

u^xj^ + xw 
§ 1. The General Theorem. 

Let p b e a general parameter f ranging over a set *p of ele
ments ; these elements may be any mathematical entities what
ever : real or complex numbers, pairs, triples, etc., of such 
numbers, even infinite sets of numbers ; functions of one or 
several variables ; systems of functions ; points, curves, surfaces ; 
etc., etc. 

Along with the set 3̂ we consider the set D of all possible 
systems (av a2 ; pv p2) of a pair of real numbers av a2 and a 
pair of elements pv p2 of ^5, and we suppose that a correspond
ence has been established by which to every element of Q, cor
responds a unique element of ty which we denote by J 

F(av a2 ; pv p2). 

We shall then say that a real single-valued function § /x(p) 
defined on ty is " linear as to F," if 

(4) f*[F(av a2; pv p2)] = a^pj + a2n(p2) on D, 

i. e., for every combination (av a2; pv p2) of Q. 
Then the following theorem holds : || 
THEOREM I I I . If 

A*o(jp), /*i(jP)> •••> f*m(P) 

* We may omit the word " non-coinciding " if we replace u point of inter
section of " by "point or points common to." 

f Compare Moore, '* Introduction etc.," § 1 ; I use throughout this section 
Moore's notation. 

J In Moore's terminology F is a " function on Q to $ , " " Introduction 
etc.," §4. 

§ Compare Moore, " Introduction etc.," § 5 ; if 21 denotes the set of all 
real numbers, fi(p) is in Moore's terminology a " function on $ to 2L" 

|| This generalization of Theorem I has been suggested to me by a remark 
in § 177 of Hadamard's Leçons sur le calcul des variations, Paris, 1910. 
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are m + 1 real single-valued functions of p, defined on ?$, which 
satisfy the following two conditions : 

A) they are linear as to F, 

B) the equation 
(1") M„(j>)-0 

holds for every element of 5̂ which satisfies simultaneously the m 
equations 
(2") Ml(p) = 0, A*,(p) = 0, • • •, pm(p) - 0, 

then there exist m real numbers cx, c2, • • -, cm9 independent of py 

such that 

(3") /*,(/>) + < W P ) + • • • + cjim(p) - 0 on % 

i. e., for every element of tyA 

Proof: We notice first that there always exist elements of ty 
which do satisfy the m equations (2") ; for F(0, 0 ; pv ft) is an 
element of 5̂ for any two elements pv p2 of $p, and on account 
of A) 

Viim 0 ; ft, ft)] = 0, ( i - 1, 2, . . . , m). 

Further we observe that if we define 

F[l, a3; F(av a2; ft, ft), ft] = F(av a2, a3; pv ft, ft) 

and generally 

(5) F[l, an; F(av a2, • • ., an_x; pv ft, • • -, pn_0, ft] 

= *"W a2, • • - , » » ; Pi, ft, • • • j f t ) , 

then J P ^ , a2, • • : , an; pv fty • • -, ft) is again an element of $p, 
and, if (4) is satisfied, then also 

(6) ii [F(av a2,-.-,an; ft, ft, • • •, ft)] 

= aAPi) + V(ft) + • • • + V O J -
After these preliminary remarks we distinguish two cases : 
Case I: The m equations (2") are satisfied for every p of ?$. 
Then according to B) 

PoiP) = 0 on «p. 
Hence we may write 

/*.(*>) + ° • ̂ i(P) + 0 • rip) + • • • + 0 • (tm(p) - 0 on «p, 
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and the theorem is proved with the particular values cx = 0, 
C2 = 0>' ' '9 °m = O-

Case II: The m equations (2") are not all satisfied for every 
poî^. 

Then there exists a definite integer n (1 ^ n = m) such that 
in the determinant 

A=k<(2>*)| M = l , 2, ...,m) 
at least one minor of degree n is different from zero for some 
special system pv p2, • • -, pm) whereas (for n < m) all minors of 
degree n + 1 vanish identically, that is, for every choice of the 
m elements pv p2f • • -, pm. In order to fix the ideas we sup
pose that the minor 

(7) A 0 = K Q > J | * 0 ( f l F , A - l , 2 , . . . , n ) . 

Let now p be any element of 3̂ and jpx, £>2, • • •, pn the n 
special elements for which A0 =|= 0 ; then 

q = F(l, av a2, --,an;p, pv p2, . . . , pn) 

is an element of ^3, and according to ^1) 

(8) Pj(q) = Pj(p) + <V/Pi ) + • • ' + <*J*j(pn) 
0 ' = 0, 1, 2, . . . , m ) . 

On account of (7) we can so determine al9 a2f • • •, dn that 

(9) / » ! ( ? ) - 0 , ^ (? ) = 0, ••', A».(3)-0. 

If n < m, it follows from the identical vanishing of the minors 
of degree n + 1 of the determinant A, p taking the place of 
pn+v that also 

(10) ^+1(q) = 0, Mn+2(?) = 0, • • -, pjq) = 0. 

Hence for n < m as well as for n = m, g is an element of ^ 
which satisfies the m equations (2") and therefore it satisfies 
according to B) also the equation 

(11) M,(?) = 0. 

But from the w + 1 equations (9) and (11) it follows, if we 
write the /^( j /s in their explicit form (8), that the determinant 

(12) | h(p), M/ft), • • -, fij(pj | = 0 (j = 0, 1, 2, • • -, n). 
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If now we expand this determinant according to the elements 
of the first column, the coefficient of fJ>0(p) is the determinant 
A0 and therefore different from zero, and this determinant as 
well as the remaining coefficients of the expansion is indepen
dent of p. Hence if we divide by A0, we obtain equation (3") 
with cw+1 = 0, cn+2 = 0, • • -, cm = 0, and this equation holds on $p, 
since jö was any element of ^3. Thus our theorem is proved.* 

§ 2. Theorems I and II as Special Cases of Theorem III. 

In order to obtain Theorem I as a special case of Theorem 
I I I , we identify the set ^ with the totality of all functions 
r)(x) of class C' on \jcxx2~\ which vanish at xl and x2, and define 

(13) F(al} a2; nv n2) = alVl + a2n2. 

If av a2 are two constants and ^(œ), v2(
x) *w o functions of $$, 

a\Vi{x) + a
2V2(

x) a g a m belongs to 5)3 and the "functions" 

lM/x)n(x) + N/x)f,Xx)] dx (j = 0,l,...,m) 

are " linear as to F" since 

(14) ^K*?i + ct2v2) = a ^ f o ) + a2/x.(rj2). 

For this special choice of the set ^}, the operator F, and the 
functions fi., Theorem I I I becomes identical with Theorem I . 

More generally we may take for 9$ the totality of all func
tions w(x) of class C' on \_xxx^ which satisfy any given system 
of conditions provided only that these conditions are linear, i. e.} 

such that they are satisfied by alnl + a2n2 whenever they are 
satisfied by wx and ?72, two functions of class C' on [^^2]« 
We thus obtain a generalization of Theorem I indicated by 
Hadamard. f 

On the other hand, to obtain Theorem I I as a special case of 
Theorem I I I , we identify the set ^ with the totality of all triples 
p = (x, yy z) formed with three independent variables x, y, z, 

* I had originally thought it necessary to add to the assumptions A ) and 
B) of the theorem the further assumption that A + 0 for some system 
pi, p%, • • -, pm ; I am indebted to Professor Moore for calling my attention to 
the fact that this assumption may be omitted, as well as for other valuable 
suggestions. 

floe, cit., §176. 
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each ranging over all real values, and define, in Cayley's set 
notation, 

FK <V Pv P2) = ai(xv Vv zi) + aixv Vv z2)> i- *-> 

= K » ! + a2
xp ai2/i + < % aizx + «A)-

F(av a2 ; pv p2) belongs again to ^3, however the numbers av 

a2 and the triples p1 = (xv yv zx) and p2 = (x2, y2, z2) may be 
chosen. 

With this definition of JF, the functions 

(19) M,(P) = Ap + B.y + ty, (J = 0, 1, 2) 

are " linear as to F" 

If n = 2, there exists at least one pair of triples (xv yv zx), 
(x2, y2, z2) for which the determinant 

I Axi + Bi!fi + cizv Axi + ^22/i + C&l 
J ^ + Bxy2 + Ci»„ ^ 2 + B2y2 + C2z2\ 

This means geometrically, if we interpret x, y, z as homogeneous 
coordinates of a point in a plane, that the two lines 

(20) Axx + Bxy + Cxz = 0, A2x + B2y + C2z = 0 

do not coincide. 
Theorem I I I then specializes into Theorem I I . 
The assumption n = 1 leads to the trivial case alluded to on 

page 403, footnote *. 
In like manner the corresponding theorems on pencils and 

bundles of planes and their generalizations to spaces of higher 
dimensions follow immediately as special cases from Theorem 
I I I . 

THE UNIVERSITY OF CHICAGO, 
February, 1910. 


