ON THE FACTORIZATION OF INTEGRAL FUNCTIONS WITH p-ADIC COEFFICIENTS.

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, September 6, 1910.)

1. IF $F(x)$ is an integral function of degree n with integral p-adic coefficients, then for any integer k we have a congruence

$$
\begin{align*}
F(x) \equiv F^{(k)}(x) & =F_{0}(x)+p F_{1}(x)+p^{2} F_{2}(x) \tag{1}\\
& +\cdots+p^{k} F_{k}(x) \quad\left(\bmod p^{k+1}\right)
\end{align*}
$$

in which each $F_{i}(x)$ is an integral function of degree $\leqq n$ with coefficients belonging to the set $0,1, \cdots, p-1$. The function $F^{(k)}(x)$ is called the convergent of rank k of $F(x)$. If

$$
\begin{equation*}
F(x)=f(x) \cdot g(x) \tag{2}
\end{equation*}
$$

in which the factors are integral functions with integral p-adic coefficients, then for any integer k we obviously have

$$
\begin{equation*}
F^{(k)}(x) \equiv f^{(k)}(x) \cdot g^{(k)}(x) \quad\left(\bmod p^{k+1}\right) \tag{3}
\end{equation*}
$$

The following converse theorem plays a fundamental rôle in Hensel's new theory of algebraic numbers :* If

$$
\begin{equation*}
F(x) \equiv f_{0}(x) \cdot g_{0}(x) \quad\left(\bmod p^{s+1}\right) \tag{4}
\end{equation*}
$$

for $\dagger s+1>2 \rho$, where ρ is the order of the resultant R of $f_{0}(x)$ and $g_{0}(x)$, then $F(x)$ is the product (2) of two integral functions with integral p-adic coefficients whose convergents of rank $s-\rho$ are $f_{0}(x)$ and $g_{0}(x)$.

Hensel's proof is in effect a process to construct the successive convergents of $f(x)$ and $g(x)$. Each step of the process requires the solution of a linear equation in two unknowns with p-adic coefficients. The object of this note is to furnish a decidedly simpler process, which dispenses with these linear

[^0]equations, and requires only the solution of a single linear congruence.

By the remark of Hensel, bottom of page 64, we may assume that the leading coefficients in $F(x), f_{0}(x)$, and $g_{0}(x)$ are powers of p, so that $F-f_{0} g_{0}$ is of degree less than n.
2. For the sake of simplicity, we first establish the theorem for the important case $s=\rho=0$: If $F(x)=F_{0}(x)+p F_{1}(x)$ $+\cdots$, in which the coefficient of x^{n} in F_{0}^{\prime} is unity and $F_{i}^{\prime}(i>0)$ is of degree less than n, and if

$$
\begin{equation*}
F_{0}(x) \equiv f_{0}(x) \cdot g_{0}(x) \quad(\bmod p) \tag{5}
\end{equation*}
$$

in which f_{0} and g_{0} are integral functions of degrees μ and ν respectively, with integral coefficients, while f_{0} and g_{0} have no common factor modulo p, then integral functions $f_{i}(x)$ of degrees $<\mu$ and $g_{i}(x)$ of degrees $<\nu$ with integral coefficients can be so determined that

$$
f=f_{0}+p f_{1}+p^{2} f_{2}+\cdots, \quad g=g_{0}+p g_{1}+p^{2} g_{2}+\cdots
$$

have as their product $F(x)$. It is meant by the last statement that congruence (3) holds for every integer k.

Since f_{0} and g_{0} have no common factor, integral functions $a(x)$ and $b(x)$ with integral coefficients can be determined (for example, by Euclid's process) such that

$$
\begin{equation*}
a f_{0}+b g_{0} \equiv 1 \quad(\bmod p) \tag{6}
\end{equation*}
$$

By (5), $F_{0}-f_{0} g_{0}$ is the product of p by an integral function with integral coefficients which may be designated $L_{1}(x)-F_{1}(x)$,

$$
\begin{equation*}
F_{0}-f_{0} g_{0}=p\left(L_{1}-F_{1}\right) \tag{7}
\end{equation*}
$$

By the remark at the end of $\S 1, L_{1}$ like F_{1} is of degree less than n. The congruence

$$
F_{0}+p F_{1} \equiv\left(f_{0}+p f_{1}\right)\left(g_{0}+p g_{1}\right) \quad\left(\bmod p^{2}\right)
$$

is equivalent, in view of (7), to

$$
\begin{equation*}
L_{1} \equiv f_{0} g_{1}+g_{0} f_{1} \quad(\bmod p) \tag{8}
\end{equation*}
$$

In view of (6), every set of solutions is given by

$$
\begin{equation*}
f_{1} \equiv b L_{1}-\rho_{1} f_{0}, \quad g_{1} \equiv a L_{1}+\rho_{1} g_{0} \tag{9}
\end{equation*}
$$

We choose $\rho_{1}(x)$ so that the degree of f_{1} shall be less than the degree μ of f_{0}. Then the final term of (8) is of degree $<\mu+\nu$,
so that the degree of g_{1} is $<\nu$. Hence the required functions f_{1} and g_{1} are given by (9).

To make the general step by induction, suppose that, for $i=1, \cdots, k$, functions f_{i} of degrees $<\mu$ and g_{i} of degrees $<\nu$ have been determined so that (3) holds. Hence we may set

$$
\begin{equation*}
F^{(k)}=f^{(k)} g^{(k)}+p^{k+1}\left(L_{k+1}-F_{k+1}\right), \tag{10}
\end{equation*}
$$

where L_{k+1} is of degree less than n. Since

$$
\begin{gather*}
F^{(k+1)}=F^{(k)}+p^{k+1} F_{k+1}, \quad f^{(k+1)}=f^{(k)}+p^{k+1} f_{k+1}, \tag{11}\\
g^{(k+1)}=g^{(k)}+p^{k+1} g_{k+1}
\end{gather*}
$$

the condition for the congruence

$$
F^{(k+1)} \equiv f^{(k+1)} g^{(k+1)} \quad\left(\bmod p^{k+2}\right)
$$

becomes, upon applying (10),

$$
L_{k+1} \equiv f^{(k)} g_{k+1}+g^{(k)} f_{k+1} \equiv f_{0} g_{k+1}+g_{0} f_{k+1} \quad(\bmod p)
$$

The general set of solutions is

$$
f_{k+1} \equiv b L_{k+1}-\rho_{k+1} f_{0}, \quad g_{k+1} \equiv a L_{k+1}+\rho_{k+1} g_{0}
$$

We determine ρ_{k+1} so that the degree of f_{k+1} shall be less than the degree μ of f_{0}; then the degree of g_{k+1} will be less than the degree ν of g_{0}. Since the induction is complete, our theorem is proved.
3. We readily deduce recursion formulas for the functions L_{i}. We have proved that functions L_{i} and ρ_{i} can be determined so that

$$
\begin{equation*}
f_{i}=b L_{i}-\rho_{i} f_{0}, \quad g_{i}=a L_{i}+\rho_{i} g_{0} \tag{12}
\end{equation*}
$$

give functions f_{i} of degrees $<\mu$ and g_{i} of degrees $<\nu$ for which congruence (3) holds for every k. From (6),

$$
\begin{equation*}
a f_{0}+b g_{0}=1+p \lambda(x) . \tag{13}
\end{equation*}
$$

In (10) we replace $F^{(k)}, f^{(k)}, g^{(k)}$ by the values obtained by replacing k by $k-1$ in (11) and then replace $F^{(k-1)}$ by the value obtained by replacing k by $k-1$ in (10). After deleting the factor p^{k}, we get

$$
L_{k}=f_{k} g^{(k-1)}+g_{k} f^{(k-1)}+p^{k} f_{k} g_{k}+p L_{k+1}-p F_{k+1}
$$

In the terms $f_{k} g_{0}+g_{k} f_{0}$ we replace f_{k} and g_{k} by their values
(12) and apply (13). After deleting the factor p we get
(14) $L_{k+1}=F_{k+1}-\lambda L_{k}-f_{k}[. g]_{k-1}-g_{k}[f]_{k-1}-p^{k-1} f_{k} g_{k}$,
in which we have employed the abbreviation

$$
\begin{equation*}
[z]_{i}=z_{1}+p z_{2}+p^{2} z_{3}+\cdots+p^{i-1} z_{i}, \quad[z]_{0}=0 \tag{15}
\end{equation*}
$$

If in (10) we set

$$
\begin{gathered}
\boldsymbol{F}^{(k)}=F_{0}+p\left[F^{\prime}\right]_{k}, \quad f^{(k)}=f_{0}+p[f]_{k}, \quad g^{(k)}=g_{0}+p[g]_{k}, \\
\gamma=\left(F_{0}-f_{0} g_{0}\right) / p,
\end{gathered}
$$

and then delete the factor p, we get
$f_{0}[g]_{k_{c}}+g_{0}[f]_{k}+p^{k} L_{k+1}=\gamma+[F]_{k}+p^{k} F_{k+1}-p[f]_{k}[g]_{k}$. By (12), (15), the sum of the first two terms equals

$$
\sum_{i=1}^{l} p^{i-1}\left(a f_{0}+b g_{0}\right) L_{i}=(1+p \lambda) \sum_{i=1}^{l} p^{i-1} L_{i}=(1+p \lambda)[L]_{l i}
$$

Hence we obtain the formula

$$
\begin{equation*}
[L]_{k+1}=\gamma+\left[F^{\prime}\right]_{k+1}-p \lambda[L]_{k}-p[f]_{k}[g]_{k} \tag{16}
\end{equation*}
$$

It is also easy to establish this formula by induction.
4. To prove the more general theorem of § 1 , we apply the method of § 2 with congruence (6) replaced by

$$
\begin{equation*}
a f_{0}+b g_{0} \equiv p^{\rho} \quad\left(\bmod p^{s+1}\right) \tag{17}
\end{equation*}
$$

Since the resultant of $f_{0}(x)$ and $g_{0}(x)$ is divisible by p^{ρ}, but by no higher power of p, solutions $a(x)$ and $b(x)$ of (17) can be determined by the method given by Hensel on pages 62, 63. In view of (4),

$$
F^{(s+1)}-f_{0} g_{0}=p^{s+1} L_{1}
$$

where L_{1} is of degree less than n. Then the congruence

$$
\begin{equation*}
\boldsymbol{F}^{(s+1)} \equiv\left(f_{0}+p f_{1}\right)\left(g_{0}+p g_{1}\right) \quad\left(\bmod p^{s+2}\right) \tag{18}
\end{equation*}
$$

is satisfied if we take

$$
f_{1} \equiv p^{s-\rho}\left(b L_{1}-\rho_{1} f_{0}\right), \quad g_{1} \equiv p^{s-\rho}\left(a L_{1}+\rho_{1} g_{0}\right) \quad\left(\bmod p^{s+1}\right)
$$

since by (17)

$$
\begin{equation*}
f_{0} g_{1}+f_{1} g_{0} \equiv p^{s} L_{1} \quad\left(\bmod p^{s+1}\right) \tag{20}
\end{equation*}
$$

and $p^{2} f_{1} g_{1}$ is divisible by p^{t}, where $t=2+2 s-2 \rho>s+1$. We choose $\rho_{1}(x)$ so that the degree of $f_{1}(x)$ shall be less than the degree of $f_{0}(x)$; then by (20) the degree of $g_{1}(x)$ will be less than the degree of $g_{0}(x)$.

Similarly, if in accord with (18) we set

$$
F^{(s+1)}-\left(f_{0}+p f_{1}\right)\left(g_{0}+p g_{1}\right)=p^{s+2}\left(L_{2}-F_{*+2}\right)
$$

the congruence

$$
\boldsymbol{F}^{(s+2)} \equiv\left(f_{0}+p f_{1}+p^{2} f_{2}\right)\left(g_{0}+p g_{1}+p^{2} g_{2}\right) \quad\left(\bmod p^{s+3}\right)
$$

is satisfied if we take

$$
f_{2} \equiv p^{s-\rho}\left(b L_{2}-\rho_{2} f_{0}\right), \quad g_{2} \equiv p^{s-\rho}\left(a L_{2}+\rho_{2} g_{0}\right) \quad\left(\bmod p^{s+1}\right)
$$

The general step in the proof may now be made as in § 2 .

HENSEL'S THEORY OF ALGEBRAIC NUMBERS.

Theorie der Algebraischen Zahlen. Von Kurt Hensel. Erster Band. Leipzig and Berlin, Teubner, 1908. xi + 346 pp.
In the theory of functions one may investigate an analytic function in the neighborhood of a point $z=a$ by means of a power series in $z-a$. In arithmetic one usually employs only developments according to the fixed base 10. The author undertakes in the present work to introduce a corresponding mobility into arithmetic and algebra by employing expansions of numbers into power series in an arbitrary prime number p.

A positive integer D can be expressed in one and but one way in the form

$$
D=d_{0}+d_{1} p+\cdots+d_{k} p^{k}
$$

in which each d_{i} is one of the integers $0,1, \cdots, p-1$. This equation will be said to define the representation of D as a p adic number, for which the following symbol will be employed:

For example,

$$
D=d_{0}, d_{1} d_{2} \cdots d_{k} \quad(p)
$$

$14=2+3+3^{2}=2,11 \quad$ (3), $\quad 216=2 \cdot 3^{3}+2 \cdot 3^{4}=0,0022$ (3).
The sum of two such p-adic numbers is readily expressed as a p-adic number. For example,

$$
0,0022+0,1021=0,10111
$$

[^0]: * Hensel, Theorie der algebraischen Zahlen, Leipzig, Teubner, 1908, p. 71.
 \dagger This condition is satisfied if $s=\delta$, where δ is the order of the discriminant of $F(x)$. Hence we obtain as a corollary the theorem of Hensel, page 68.

