furthermore let

$$|f_i(x, t, y)| \leq M$$
 (*i* = 1, 2).

Then if ρ satisfies the conditions

$$\rho \leq \alpha, \quad \rho \leq \frac{\beta}{M}, \quad \rho \leq \frac{\gamma}{2AM},$$

there exists, in the interval $|x - x_0| \leq \rho$, one and only one continuous solution y(x) of the integral equation (1).

The proof is entirely similar to that of Theorem I.

CORNELL UNIVERSITY, January 10, 1913.

A THEOREM ON ASYMPTOTIC SERIES.

BY MR. VINCENT C. POOR.

THEOREM: If f(z) is not holomorphic at z = 0, but is formally developable into a Maclaurin series, and if w is asymptotic to $a_1/z + a_2/z^2 + \cdots$ (written: $w \propto a_1/z + a_2/z^2 + \cdots$), then f(w) has an asymptotic representation.*

To prove this theorem take f(z) in the form

(1)
$$f(z) = f(0) + f'(0)z + \frac{f''(0)}{2!}z^2 + \cdots + \frac{f^{(n)}(0)z^n}{n!} + \int_0^z f^{(n+1)}(t) \cdot \frac{(z-t)^n}{n!} dt.$$

Since

$$w \, \sim \, \frac{a_1}{z} + \frac{a_2}{z^2} + \, \cdots$$

w may be written

(2)
$$w = \frac{a_1}{z} + \frac{a_2}{z^2} + \cdots + \frac{a_n + \epsilon_{1nz}}{z^n},$$

where, according to the Poincaré definition[†] for an asymptotic

^{*} This theorem is the "résultat préalablement obtenu" referred to in Professor Ford's paper in the *Bulletin* of the French Society for 1911. See *Bulletin Société math. de France*, vol. 40 (1912), fascicule 1 under "Erratum du Tome XXXIX."

[†] Poincaré, Acta Mathematica, vol. 8 (1886), p. 296.

series,

$$\lim_{z \doteq \infty} \epsilon_{\ln z} = 0.$$

Replacing z by w in (1) and collecting coefficients of like powers, the following equation results:

(3)
$$f(w) = f(0) + \frac{A_1}{z} + \frac{A_2}{z^2} + \dots + \frac{A_n + \epsilon_z}{z^n} + R,$$

where

$$R = \int_0^w f^{(n+1)}(t) \cdot \frac{(w-t)^n}{n!} dt$$

and where the A_i $(i = 1, \dots, n)$ are readily determined from the substitution.

and

$$\epsilon_z = \epsilon_{1nz} + \epsilon_{2nz} + \cdots + \epsilon_{nnz}$$

 $\epsilon_{in\,z/z^n}$ $(i=1, \cdots, n)$

are the remainders after n terms of w, w^2, w^3, \dots, w^n , respectively. Since

$$\lim_{z \doteq \infty} \epsilon_{inz} = 0 \qquad (i = 1, \dots, n),$$

it follows that

 $\lim_{z \doteq \infty} \epsilon_z = 0.$

To satisfy the Poincaré definition of an asymptotic series, it remains to show that

$$\lim_{z \doteq \infty} z^n R = 0.$$

For z real this last condition may be shown to hold as follows: $(w-t)^n$ does not change sign in the interval $0 \leq t \leq w$, therefore the first law of the mean for integrals may be applied. Making this application, it thus obtains that

(4)
$$z^n R \equiv \frac{z^n}{n!} \int_0^w f^{(n+1)}(t) \cdot (w-t)^n dt = \frac{z^n \theta_z M}{n!} \int_0^w (w-t)^n dt,$$

where M is the maximum value of $|f^{(n+1)}(t)|$ in the interval $0 \leq t \leq w$, and where $-1 \leq \theta_z \leq 1$. Evaluating the integral

in (4) and taking the limit, it is found that

$$\lim_{z \to \infty} z^n R = \lim_{z \to \infty} \frac{z^n \cdot \theta_z M \cdot w^{n+1}}{(n+1)!} = 0.$$

Hence by definition

(5)
$$f(w) \sim f(0) + \frac{A_1}{z} + \frac{A_2}{z^2} + \cdots$$

The form I have selected for the remainder in (1) readily applies for z complex. Taking the path of integration as a straight line from z = 0 to z = w and writing $t = re^{i\theta}$, $w = w_0e^{i\theta}$, then

$$|z^n| \cdot |R| \cdot \leq \frac{|z^n| \cdot M}{n!} \int_0^{w_0} |w_0 - r|^n \cdot dr,$$

M being the maximum value of $|f^{(n+1)}(t)|$ in the interval of integration. But

$$\lim_{z \doteq \infty} |z^n| \cdot |R| \leq \lim_{z \doteq \infty} \frac{|z^n| M \cdot w_0^n}{n!} \int_0^{w_0} dr = \lim_{z \doteq \infty} \frac{z^n M \cdot w_0^{n+1}}{n!} = 0.$$

Thus (5) holds for z complex.

That the divergent series

(6)
$$f(0) + f'(0)z + \frac{f''(0)}{2!}z^2 + \cdots$$

is asymptotic at z = 0, or replacing z by 1/z in (6), at $z = \infty$, is evident since w may be chosen as 1/z in (5). (6) is therefore an asymptotic representation for f(z) in the vicinity of z = 0, or if w be taken as 1/z in (5),

$$f\left(\frac{1}{z}\right) \sim f(0) + \frac{f'(0)}{z} + \frac{f''(0)}{2! z^2} + \cdots$$

ANN ARBOR, MICH., January, 1913.