
472 ASYMPTOTIC FORM OF THE FUNCTION W(x). [ June , 

(3Rz,)* = 9JÎ* (cf. §44a4). Also if 3JlL has the properties 
D, A, so does (ML)* (§ 79.2; § 44a5). In view of these propo
sitions and Theorem II we have the following theorem. 

THEOREM III. If a class 9JÎ is composed of bounded functions 
ix and has the property D, then the necessary and sufficient con
dition that WlL have the property A is that 9JI* have the property A. 

In his dissertation, Chicago, 1912, E. W. Chittenden has 
made very effective use of infinite developments of a range 
$P where each stage of the development may contain a de-
numerably infinite number of subclasses. The theorems here 
given are valid also for such infinite developments. Theorem 
I may be established for infinite developments by essentially 
the same reasoning as above and in fact the same system 
((ôm0) used above serves also in the case of infinite develop
ments. The other theorems are established precisely as 
above. 

DARTMOUTH COLLEGE, 
February J 1913. 

THE ASYMPTOTIC FORM OF THE FUNCTION ¥(*). 

BY MR. K . P . WILLIAMS. 

(Read before the American Mathematical Society, April 26, 1913.) 

THE function 

*«--°-£(irb-rh)' 
where C is Euler's constant, is of great importance in many 
questions in analysis, and also in certain problems in mathe
matical physics. It is the logarithmic derivative of the gamma 
function, and plays a fundamental rôle in the study of the 
latter. On account of the slow convergence of the series 
which defines it, the knowledge of the asymptotic form of 
ty(x) is particularly desirable.* This can be computed di
rectly from the above expression by the aid of factorial series,f 

* We use the term asymptotic according to the definition of Poincaré, 
and denote such a relation by the symbol ~ . See Borel, Les Séries diver
gentes, p. 26. 

t Nielsen, Handbuch der Theorie der Gammafunktion, Kapitel XXI. 
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or it can be obtained from the definite integral form of the 
function.* Both of these methods, however, involve a 
considerable amount of complicated calculation. 

We shall show in this paper how to obtain the asymptotic 
form of ^f(x) in a very simple manner from its fundamental 
functional property. As is well known, it is a solution of the 
non-homogeneous difference equation 

(1) f(x+l)-f(x)=llx, 

and from this fact we shall derive the asymptotic form of the 
function, without making use of any, except one very obvious, 
property of its explicit analytical representation. 

1. The Formal Series.—We shall merely assume that equa
tion (1) has an analytic solution (all solutions differing from a 
particular one by a periodic function). I t is immediately 
apparent from the equation itself that this solution increases 
over a set of points a unit's distance apart on the positive 
real axis in the manner of the harmonic series. From this we 
expect our solution to increase like log x. 

Let us therefore put 

(2) ƒ(*) = log a: + «o + ^ + p H , 

and substitute in (1). The quantity log (1 + x) — log x 
= log (1 + 1/x) can be expanded in a series in 1/x, which 
converges for \x\ > 1. We have also for the same values 
of x 

(1+ x)n x 

where, as usual, 
/' m\ __ 
\r J' 

ml 
rl(m — r) I 

The expression which we obtain on substituting can thus 
easily be written as a series in 1/x. When we equate the dif
ferent coefficients to zero we find that a0 is arbitrary, while 

* Nielsen, loc. cit., Kapitel XIV. 
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(tx, a2, • • • are given uniquely by the relations 

- ( ï ) 
ai + g = 0, 

a2 + ai + g = 0, 

a2 + ax + ^ = 0, (D a 3 - (D 
— ( 3 ) a 4 + ( 2 j a 3 - " ( j J a2 + ai + g = 0, 

We shall next show how the a's as determined by the above 
equations are related in a simple manner to the Bernoulli 
numbers. Put 

ai = — bu 

( - l ) w + 1 

an = bn (n > i)# 
lb 

The first of our series of equations then gives b\ = 1/2, while 
from the (n — l ) th equation we find 

6 " - 1 + 2 \ 1 ) 6 " - 2 + 3 ( W 2 )&«-s4 ^ 2 ( ^ 1 ) U -

- h + ~ = 0. 

When we add 2&i = 1 to each member, and then multiply 
by n, this relation takes the form 

(ï)fc-i+(;)^+ ••• +(»-2)fc+(»ii)M-i-». 
Let us now introduce the symbol {X + l}n to represent 

the expression obtained on expanding (X + l ) n by the bi
nomial theorem, and then writing each of the exponents of 
X as a subscript. With this convention the above recursion 
formula between the b's takes the very simple form 

{b + l } n — bn = n. 
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But this is precisely one of the symbolic equations which 
defines the Bernoulli numbers.* It therefore follows that all 
the b's of odd suffix, except &i, and accordingly the corre
sponding a's, are zero.f 

In order to make our results agree in notation with those 
usually given we shall put 

hn = ( - l)*+15n, 

so that Blf B2, - • • are the constants more commonly called 
the Bernoulli numbers. 

We have thus completely determined all the a's except 
a0, which was arbitrary, and to which we shall give the value 
zero. We then have as a formal solution of (1) 

f{x) = l o g * - KZ+ 2 , -
ZJX S = 0 ^S * X 

where 

£ l _ 6 ' B s _ 3 0 ' B s _ 4 2 ' Bi~3Ô' '"• 

2. The Asymptotic Property of the Formal Series.—We shall 
next investigate the relation between the formal solution we 
have obtained, and an actual solution of (1). In the first 
place, we see that the formal series diverges for all values of 
x; for when the subscript p is sufficiently large we have the 
inequality 

^>A(2p+l)(2p + 2), 

where A is a constant. J It is therefore natural to study the 
difference between an actual solution and a certain number 
of terms of the formal solution. 

Let us write 

Mx) - l o g * - i - 2^ 2 + ••• + ( - D " 2 ^ 7 ^ -

* Cesàro, Elementares Lehrbuch der algebraischen Analysis und der 
Infinitesimalrechnung. Deutsch von G. Kowalewski, p. 295. 

t Cesàro, loc. cit., page 296. 
t Borel, loc. cit., p. 24. 
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and then expand <pn(x + 1) — <pn(%) in a series in 1/x. The 
series so obtained will converge for \x\ > 1, and from the 
manner in which the a's in (2) were determined it is evident 
that the coefficients of 1/x2, • • -, l/x2n+1 will all be zero,* the 
remaining coefficients, which we denote by <?i(w), C2(n), •••, 
being uniquely determined in terms of J5i, 2?2, • • -, Bn. Thus 
we see that <pn(x) is a solution of the equation 

1 c / n * C 2 ^ 
(3) <p(x+l)~ <p(z) = - + - ^ + - ^ + 1 + •••, 

lis tAy *t/ 

where the series converges outside a circle of unit radius. 
Suppose next that g(x) is any actual analytic solution of (1) 

and put 

9n(x) = <Pn(x) ~ g(x). 

This new function is then a solution of the equation 

cAn) c (n) 

(4) 0(x + 1) - 6(x) = ^ + 2 + ^ + 3 + • • •, 

and consequently is given formally by 

(5) en(x) = an(x) - ci<"> j^^+2 + ( g + 1)2«+2+ • • • J 

- c2(n) [ ^ + 3 + (a; + i)2«+3 
1 + 

where con(#) is some periodic function of period 1. 
To show that the double series above converges, we make 

use of the following inequalities : 

(6) 
1 < J^i (* £ 2), Or + s)k 

if x is in the right half of the complex plane and \x\ > 1, and 

(6') 
1 

(x + sy <êk (* ̂  2). 
* In the series from which we determined the a's by equating coefficients 

to zero, it is found that the coefficient of l/a^+1 involves only ai, a2, • • •, a&. 
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if x is the left half plane* (x = u + W— 1) and | v \ > 1. 
These inequalities, in connection with the fact that the 
series in (3) converges, show that the series in (5) represents 
an analytic function, and consequently the above expression 
defines dn(x), if ( x | is large enough and arg x 4= =*= ?r. We see 
also that can(x) must be analytic, since we are assuming the 
same to be true of 0n(x). 

We moreover have by (5) and (6) for x in the right half plane 

r | C l ( n ) | | C 2 ( n ) | "J 

Since the series is absolutely and uniformly convergent in 
any closed region exterior to the unit circle, this shows at once 
that 

lim x2n(g(x) + o)n(x) — <pn(x)) = 0, 
«=00 

when — 7r/2 ^ arg x £ w/2. 
It will next be proved that the periodic function un(x) is 

in reality independent of n. To show this we merely note 
that from the above 

g(x) + œn (x) - <pn(x) and g(x) + œn+1(x) — <pn+i(x) 

both approach zero for x large in the right half plane, while the 
quantity <pn+i(x) — <pn(x) obviously itself approaches zero. 
It then follows immediately that the difference œn+i(x) — ù)n(x) 
approaches zero when x goes to infinity along any ray making 
an acute angle with the positive real axis. But since this 
quantity is a periodic function, we must therefore have 
everywhere 

0)n+i(x) = C0nO). 

We can now replace con(x) by a unique periodic function 
co(a:). Then from the above limit and the definition of 
asymptotic representation we derive the important relation 

g{x) + (a{x) - logx - ^-+ £ 
2x ' £ î 2s • x28 ' 

for x in the right half of the complex plane. 
* We can obtain these inequalities directly from those derived by ele

mentary means by Birkhoff, " General theory of linear difference 
equations," Trans. Amer. Math. Soc, vol. 12, p. 248. 
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If we should make use of (6') instead of (6) we would find 
in a similar way that 

lim v2n(g(x) + œ(x) - <pn(x)) = 0, 
c=oo 

for x in the left half plane. But since v = \x\ sin (arg x), 
this limit reduces to the former, so that the above asymptotic 
relation holds for all approaches to infinity, provided only 
that arg x ^ ± ir. 

We can now state the theorem: Given any analytic solution 
g(x) of (1), there exists a unique analytic periodic function 
Ù)(X) such that g(x) + u(x) is represented asymptotically by the 
formal solution of (1), for x approaching infinity in any direc
tion except along the negative real axis. 

If instead of the value of 0n(x) given by (5) we should take 
the solution of (4) which is analogous to the formal solution 

l(x - 1) + l(x - 2) + • • • 
of the equation 

h{x + 1) — h{x) = l(x), 

we could show in a similar way that there exists a periodic 
function such that its sum and the solution of (1) remains 
asymptotic to the formal solution for all approaches to infinity 
except the positive real axis. 

Let us now take the solution ty(x) of (1) and determine the 
corresponding periodic function. Let x = n, a positive integer ; 
then 

whence we see that ^r(n) — log n approaches zero when n 
increases indefinitely. I t therefore follows that the periodic 
function must in this case be zero along the real axis and, 
being analytic, is consequently identically zero. We thus have 
the well known relation 

*(*)~log*-^+Z^~, 

for — 7T < arg x < 7r. 
I t is evident that the above method and the relation 
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Tf(x) I T(x) = ty(x) give a very easy way to compute as many 
terms as may be desired in the series which occurs in the 
asymptotic form of the gamma function. 

INDIANA UNIVERSITY, 
March, 1913. 

AN ERRONEOUS APPLICATION OF BAYES' 
THEOREM TO T H E SET OF 

REAL NUMBERS. 

BY DR. EDWARD L. DODD. 

(Read before the American Mathematical Society, January 1, 1913.) 

BAYES' theorem on the probability of causes is frequently 
introduced with an urn problem.* Here only a finite number 
of objects come into consideration. For example: The urn 
Ui contained 3 white balls and 1 black ball; the urn U% con
tained 2 white balls and 2 black balls. A man, blindfolded, 
drew a white ball. What is the probability that this white ball 
came out of Ui,—assuming that each urn was equally ac
cessible? After a consideration of the general problem of this 
nature, the following theorem, known as Bayes' theorem, is 
announced: 

Let co; be the probability a priori that a certain urn, or 
" cause," or set of conditions Ui will come into play. The 
" causes " are to be mutually exclusive; and i = 1, 2, • • -, s. 
Let pi be the probability that Ui, when brought into play, 
will yield a certain event. Then, after this event has hap
pened, the probability a posteriori Pi that the event had its 
origin in Ui is 

p = wPi 
* coipi + CO2P2 + • • • + UsVs 

In the preceding example, it is assumed that coi = co2 = §. 
Hence, with pi = f, p2 = f, it follows that P i = f,—a result 
which on inspection seems plausible; since f of all the white 
balls were in the first urn, E7i. This urn example illustrates, 
indeed, the following important corollary of Bayes' theorem: 

If each of a finite number s of mutually exclusive causes 

* E. g., Poincaré, Calcul des Probabilités (1912), p. 153. 


