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11. In the American Journal of Mathematics, volume 34 
(1912), page 173, Mr. Schweitzer has shown how to generate a 
quasi-four-dimensional geometry ARi0J by adjoining a point tac
tically to the system 3jR3 and assuming the axiom "aRfiyôe implies 
dReafiy " which ensures that the generating relation is alter
nating. The resulting system is sufficient for the usual three-
dimensional projective geometry if an axiom expressing Dede-
kind continuity (suitably modified for projective geometry) 
is added. This geometry 4Ril) may be regarded as underlying 
a system of four-dimensional simplexes inscribed in a hyper-
sphere. In the Archiv der Mathematik una1 Physik, volume 21 
(1913), page 204, E. Study has remarked that the figure of five 
ordered real points, no four of which are coplanar, has a (single) 
property, "signatur" (+ ) or ( — ), which is not disturbed by 
positive real collineations. It seems simpler and altogether 
more convenient to regard Study's figure of five points with 
positive or negative "signatur" as a sensed simplex in quasi-
four space as indicated above. 

O. D. KELLOGG, 

Secretary of the Section.. 

THE INFINITE REGIONS OF VARIOUS 
GEOMETRIES. 

BY PROFESSOE MAXIME BÔCHER. 

(Read before the American Mathematical Society, September 8, 1913.) 

MOST geometers are now conscious that the introduction 
of points at infinity in such a way that in plane geometry 
they form a line, in three-dimensional geometry a plane, 
is, to a large extent, an arbitrary convention; but few of 
them would probably admit that this remark has much 
practical importance (except in so far as they might regard 
any question concerning the logical foundation of geometry 
as having practical importance) since the convention here 
referred to is commonly regarded as being the only desirable 
one. It is the object of the present paper to point out more 
explicitly and in greater detail than has, to my knowledge, 
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been done before that this view is by no means justified.* 
For investigations in the realm of projective geometry, the 
conception of the line or the plane at infinity is the natural 
and appropriate one; and inasmuch as every geometric 
investigation can be forced into the projective mould, this 
conception of the infinite region can always be made to do 
duty. It is, however, not the most desirable one in all cases. 

For the sake of simplicity I shall consider first merely 
plane geometry, and, indeed, the geometry of the real plane. 

§1. The Projective Plane. 

In projective geometry we have to deal with the 8-param-
eter group of point transformations 

(i) 

aiX+biY+Ci 
atX + hY+c* 

a2X + b2Y + c2 

azX+bzY+cz 

ax bi ci 

a2 b2 c2 

as bz c3 

*o, 

where X, Y stand for non-homogeneous cartesian coordinates, 
which we will suppose to be rectangular. Every trans
formation of this group carries over points, in general, into 
points and collinear points into collinear points. Strictly 
speaking, the points on the line 

azX+bsY+c3 = 0 

are not transformed at all; but the nearer one comes to such a 
point the farther away will the transformed point lie, and 
we consequently speak of these points as being "thrown to 
infinity/ ' and thus introduce the conception of points at 
infinity in projective geometry. All these points at infinity, 
or ideal points, we regard as lying on a single line in order 
not to have any exception to the statement that collinear 
points go over into collinear points. We then introduce 

* This article was already in type before I saw a paper, by H. Beck, 
Archiv d. Math. u. Physik, ser. 3, vol. 18, p. 43, which has much the same 
tendency. In that paper only the space of inversion is considered, and 
the questions taken up are in the main different from those here treated. 
The author seems not to have noticed that in my book of 1894 (cited 
below) I had explicitly described the infinite region for the complex plane 
of inversion, and implicitly (by the constant use of the term " Null sphere 
at infinity " with its equation) for spaces of higher dimensions. 
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homogeneous coordinates {x : y : t) by means of the equations 

Y - x V - y 

in order to be able conveniently to designate the various 
points at infinity. All this is so well known that the foregoing 
brief sketch will suffice. 

If we now approach other groups of transformations with 
an open mind and in the same spirit in which we just ap
proached the group (1), we shall be led in the same way to 
other geometries worthy of being considered side by side 
with projective geometry,* and each of these geometries will 
have just as much right to its own peculiar infinite region as 
has projective geometry. 

§ 2. The Plane of Analysis.^ 

We shall consider in this section the geometry which is 
based on the 6-parameter group 

aiX + ft , ^ ^ , 
x ~^x~+~ô1 L. * l*°> 

(2) 
y2Y + ô2 172 521 ' 

where again, for the sake of concreteness, we assume all the 
quantities involved to be real. 

Suppose, first, that neither 71 nor 72 is zero. Then (2) 
gives a transformation of the finite plane which carries over 
every point into a new position except that the points on the 
lines 

(3-4) 7 1 * + 8 1 = 0, T 2 F + ô 2 = 0 

are not transformed. If we take any point (Xi, Yi) on one 
of these lines, and allow another point (Z2, Y2) to approach 
it in such a way as never to lie on the line in question, then 
the image of this second point recedes to infinity. In this 
sense we may say that the lines (3), (4) are both thrown to 
infinity. 

* Cf. Klein's Erlanger Programm (1872), where, however, the point 
with which we are here concerned, the character of the infinite region, is 
not brought out. 

t Cf. Osgood, Transactions, vol. 13 (1912), p. 159. 

« 1 

Ti 

« 2 

Ira 

011 
«1 

02 
52 
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Similarly, since the inverse of (2) is 

- hX' + ft - f rF + fo 
7iX ' - a i ' X y2Y'-a2> 

we see that there are also two lines 

(5-6) 7 i Z ' - a i = 0, 7 2 F - a2 = 0 

which come from infinity. 
If one but not both of the quantities 71, 72 are zero, only 

one of the lines (3), (4) will go to infinity (the other equation 
no longer representing any locus), and only one of the lines 
(5), (6) will come from infinity; while if 71 = 72 = 0, there 
are no exceptional lines of this sort. 

Apart from these exceptional lines, every line x — const., 
and also every line y = const., goes over into another line 
of the same form; and every line of one of these forms comes 
from another such line. These lines we shall find play a 
fundamental rôle in the kind of geometry we are now con
sidering, and it will be convenient to designate them as 
ground-lines, distinguishing between two kinds of ground-
lines according as the equation is x = const, or y = const. 
We may then say 

The transformations (2) are one-to-one point transformations 
which carry every ground-line into a ground-line of the same kind. 

This statement, however, is at present not accurate since 
it admits certain exceptions. I t becomes accurate only 
when, as we shall now do, we introduce points at infinity (ideal 
points) in such a way that they form two new ideal ground-
lines, one of each kind. This may be easily effected by 
synthetic methods. We will, however, proceed analytically 
by the use of homogeneous coordinates defined by the equa
tions 

x-3, r«£. 
These, it should be noticed, are not the homogeneous co
ordinates of projective geometry, a point being determined 
here by four coordinates (xi : x2, 2/1 : 2/2) involving, however, 
only two ratios. The finite points are those for which neither 
X2 nor 2/2 is zero, while the points at infinity are, by definition, 
sets of coordinates in which either x2 or y2 or both are zero, 
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but where not both the x's (and also not both the y's) are zero. 
These last mentioned sets of coordinates we do not speak of 
as being points at all. Moreover we agree, that two points 
at infinity shall be identical when and only when the x's of 
one are proportional to the x's of the other, and also the y's 
of one are proportional (though perhaps with a different 
factor of proportionality) to the y's of the other. This con
vention is the natural one to make, since finite points will be 
identical under, and only under, the same conditions. 

Every homogeneous equation of the first degree in t/i, y2 

represents a line parallel to the axis of x (an #-ground-line) 
except the equation y2 = 0 which is satisfied only by ideal 
points and which we speak of as the ^-ground-line at infinity. 

Similarly the equation x2 = 0 gives us the ^/-ground-line 
at infinity. 

These two ideal ground-lines obviously contain all points 
at infinity. They have one and only one point in common, 
namely (1 : 0, 1 : 0), which we speak of as the double point 
at infinity in distinction to the infinite number of simple 
points at infinity where only one of the two quantities x2, y2 

is zero. 
The transformation (2) may be written 

pxi = aixi + pix2, cryi = a2yi + fi2y2, aih — /3m =f= 0, 
(7) 

px% = Ti^i + 8i«2, 07/2' = 722/1 + Ô22/2, a2ô2 ~ 18272 + 0. 

We pass now to straight lines other than ground-lines. 
Such a line may be written 

AX+ BY+ C = 0, 

where neither A nor B is zero; or, in homogeneous coordinates, 

Axiy2 + Byix2 + Cx2y2 = 0. 

This is a special case of the general bilinear equation 

(8) axxyx + bxxy2 + cx2yx + dx2y2 = 0. 

This equation is readily seen to represent, in general, an 
equilateral hyperbola with ground-lines as asymptotes. I t 
may, however, as we have just seen represent a single straight 
line, not a ground-line, or it may represent any pair of ground-
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lines, one of each set. All these curves we shall speak of 
as bilinear curves; the last case, which is characterized alge
braically by the vanishing of the determinant* ad — be, 
being designated as a singular bilinear curve. A non-singular 
bilinear curve is a straight line or a hyperbola according as it 
does or does not pass through the double point at infinity. I t 
should be noticed, however, that a single ground-line is not a 
bilinear curve, but is something simpler. 

I t is clear that all transformations (7) carry bilinear curves 
into bilinear curves leaving them singular or non-singular 
as the case may be. All non-singular (and also all singular) 
bilinear curves are equivalent under the group (7). 

I t will thus be seen that in this kind of geometry the classi
fication of curves as straight lines, conies, etc., is an artificial 
one; some straight lines being, for instance, ground-lines and 
some bilinear curves. This fact becomes still clearer if we 
consider some of the fundamental properties of the various 
curves. 

Two distinct ground-lines of the same kind have no point 
in common. For two such ?/-ground-lines are given by the 
equations 

piXi + qix2 = 0 
PlÇ2 — P2Ç1 4= 0, 

P2X1 + q2x2 = 0 

which are satisfied only by Xi = x2 = 0. This we do not 
speak of as a point. 

Two ground-lines of different kinds have one and only one 
point in common. In particular, two different finite, #-ground-
lines have different points at infinity, namely the points 
where they meet the ^/-ground-line at infinity. I t will not do 
in this case to say that parallel lines meet at infinity. 

A ground-line and a non-singular bilinear curve always have 
one and only one point in common. A general algebraic proof 
may readily be given, or we may first reduce the ground-line 
(which we may suppose to be a 2/-line) and the bilinear curve 
to the normal forms 

xi = 0, xiyi + x2y2 = 0 

by a transformation (7), as is clearly always possible. These 

* We note in passing that this determinant is an invariant (combinant) 
of the bilinear curve under the transformation (7). 
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curves have obviously the point ( 0 : 1 , 1 : 0), and no other 
point, in common. 

Two distinct non-singular bilinear curves haw not more than 
two joints in common. If there is any point of intersection, 
let P be such a point, and throw it to the double point at 
infinity by a transformation (7). Then the bilinear curves 
become straight lines, and these can intersect at most in one 
point besides the double point at infinity» 

It is readily seen from this proof, or otherwise, that the 
case of a single point of intersection may be regarded as the 
limit of cases in which the curves intersect in two points and 
where these two points approach each other. We say, then, 
in this case that the curves are tangent to each other. It is 
readily seen that this definition of contact coincides with the 
ordinary one when the point of contact is finite. Contact at 
infinity, on the other hand, means something very different 
here and in projective geometry. This is illustrated by the 
following facts: 

A ground-line cannot touch a bilinear curve, since it always 
meets it in only one point. In particular, an equilateral hyper
bola whose asymptotes are ground-lines must not now be 
regarded as being tangent to these ground-lines at infinity. 

Two parallel straight lines, not ground-lines, must be re
garded as non-singular bilinear curves which have contact at 
the double point at infinity. 

Two bilinear curves (equilateral hyperbolas) with one 
asymptote in common do not in general have contact with 
one another at infinity. They do this, however, if they not 
only have a common asymptote but are of the same size 
without coinciding. 

§ 3. Correspondence of the Plane of Analysis to a Ruled Quadric. 

The two sets of ground-lines of the plane of analysis strongly 
suggest the two sets of rulings on a non-singular quadric 
surface. In each case every line of one set meets every line 
of the other set, but meets no other line of its own set. That 
this is not merely a superficial analogy may be seen as follows : 

Let 8 denote any unparted hyperboloid or hyperbolic 
paraboloid in projective space, and designate one of the two 
sets of rulings arbitrarily as the first set, the other as the 
second set. It is well known that the cross-ratio of the range 
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in which four rulings of one set are cut by a ruling of the 
other set is independent of the choice of this ruling, and that 
this cross-ratio is called the cross-ratio of the four rulings. 
Now let us choose three fixed rulings of the first set and 
attach to every ruling of this set a value of the parameter X 
equal to the cross-ratio which this ruling makes with the 
three fixed rulings. In this way every ruling of the first set 
is uniquely determined by a value of X, the three originally 
selected rulings corresponding to the values X = 0, 1, oo. 
Similarly we determine the rulings of the second set by the 
values of a parameter F. Since every point on 8 is deter
mined as the intersection of one ruling of the first with one of 
the second set, we have thus a system of coordinates (X, Y) 
between whose real values and the real points on S, finite or 
at infinity, there is a continuous one-to-one correspondence, 
provided we include the values X = oo and 7 = oo. We 
thus establish a continuous one-to-one correspondence between 
the points of S and the points of the plane of analysis of such a 
sort that to the two sets of rulings of S correspond the two 
sets of ground-lines of the plane of analysis.* Moreover the 
transformations (2) of the plane of analysis evidently corre
spond to the transformations of 8 into itself which carry over 
every ruling of each set into another ruling of the same set 
in such a way that each set of rulings is transformed pro-
jeetively into itself. Such transformations are yielded by 
those collineations of space which carry over S into itself 
without interchanging the two sets of rulings; and conversely 
it may be proved that every transformation of S into itself, 
of the kind we want, may be obtained in this way. Thus we 
may say: 

Abstractly considered, the real plane of analysis with its real 
transformations (2) is identical with a real, non-singular, ruled 
quadric 8 and such of its real collineations into itself as do not 
interchange the rulings of the two sets. If, however, we wish 
to get an intuitional substratum for this abstract theory, the 
plane of analysis would seem to be the simpler from every 
point of view except that it is, at first, a little unfamiliar.f 

Several generalizations of what has just been said will at 
once suggest themselves. 

* By taking for S & hyperbolic paraboloid, we can, if we wish, make the 
infinite region of the plane of analysis correspond to the infinite region of S. 

t The quadric surface S also has its peculiar advantages owing to 
the way it is immersed in three-dimensional space. 
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In the first place, no difficulty is introduced by allowing 
all the quantities considered to be complex. In this way we 
get the complex plane of analysis, on the one hand, and the 
complex surface S, on the other; that is, not merely the real 
points of S, which we have considered exclusively so far, but 
also its complex points. Moreover, there is no necessity now 
to assume that S has real rulings, or even that it has real 
points: it may be any non-singular quadric* 

On the other hand, either in the real or in the complex plane 
of analysis, we may consider not the group of transformations 
(2), but the larger group consisting of these transformations 
(which we will now call the direct transformations) and also 
of the indirect transformations obtained by combining them 
with the transformation 

X' = 7 , Y' = X. 

This larger group obviously corresponds to the group of all 
the collineations of 8 into itself. From this point of view we 
may say: 

The geometry of analysis in the plane, and the projective 
geometry on any non-singular quadric surface, are abstractly 
identical. 

§ 4. The Plane of Inversion. 

This last theorem recalls one of Klein's early discoveriesf 
namely that the geometry of inversion in the plane is abstractly 
identical with the projective geometry on any non-singular 
quadric surface. By combining these two facts we get the 
result: 

The geometry of analysis in the plane and the geometry of 
inversion in the plane are abstractly identical. 

This result, like the two from which we have deduced it, 
is true, however, only if we disregard all questions of reality. 
Let us, then, go back and consider the geometry of inversion 
for its own sake, at first in a very elementary manner. 

We start from the real finite plane and its rectangular 
cartesian coordinates (X, Y), and consider the 6-parameter 
group of transformations generated by all rigid motions 

* We mention in passing that the bilinear curves may readily be shown 
to correspond to the plane sections of 8, a fact which is, of course, equally 
true if we restrict ourselves to reals. 

t Math. Annalen, vol. 5 (1872), p. 267. 
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combined with inversions in circles and reflections in lines. 
Since an inversion throws the points near the center of the 
circle to a great distance, and brings the points at a great 
distance into the neighborhood of the center, we are in the 
habit of saying that it throws the center to infinity, and vice 
versa; and since, except for this, we have a one to one trans
formation, we are here led, in precisely the manner of §§1, 2, 
to introduce the conception of a single point at infinity, and 
to say: In the geometry of inversion of the real plane, the infinite 
region shall be regarded as forming a single point. This point 
of view is so familiar, through its importance in the theory of 
functions of a single complex variable, that we need not insist 
on it further. It is, indeed, the one case in which it is generally 
conceded, though often grudgingly, that the conception of the 
line at infinity is not the only possible one. We recall that the 
simplest class of curves here is that which consists of all 
straight lines and all circles (we consider here only real loci), 
these curves being carried into one another by the trans
formations of the group. Straight lines differ from circles 
merely in that they pass through the point at infinity. Two 
straight lines intersect in general in two points, one of which 
is at infinity; while if the lines are parallel they must be 
regarded as tangent to each other at infinity. Etc. 

Far less commonly recognized is what we get when we 
consider the geometry of inversion in the complex plane.* 
We must here consider the two sets of minimal lines 

X + l / ^ T Y = const., X - V~=r\ Y = const. 

It is readily seen that every motion of the plane in itself 
carries over a minimal line into a minimal line of the same 
set, while every reflection in a line f and every inversion in a 
circle % carries over a minimal line into a minimal line of the 
other set. In the case of inversions, however, there are two 
exceptions: points on the minimal lines through the center 
of the circle of inversion are not transformed at all, but may, 

* Cf. Study: "Das Apollonische Problem," Math. Annalen, vol. 49 
(1897), p. 497, and E. v. Weber: "Zur Theorie der Kreisverwandtschaften 
in der Ebene," Bayerische Sitzungsherichte, vol. 31 (1901), p. 367, in neither 
of which long treatments is a word said concerning the nature of the infinite 
region. 

t Reflection is defined when and only when the line is not a minimal line. 
t Inversion in a circle is defined when and only when the circle is not a 

null circle. 
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as in previous cases, be said to be thrown to infinity. Thus 
we are led to expect that in the geometry of inversion of the 
complex plane the infinite region should be taken as consisting 
of one real ideal point (the point at infinity, of the real plane) 
and through it two ideal minimal lines containing no other 
real point.* 

All this can be put on a firm basis by the use of circular 
coordinates 

S = X + V-\ 7, H = Z - l / - 1 7 . 
In terms of these coordinates the group of direct circular 
transformations, that is, those which do not interchange the 
two sets of minimal lines, may be written f 

A 7iS + «i 

_ a2H + ft 

« 1 

Yi 

« 2 

J72 

011 
«1 

ft 
52 

+ o, 

7 2 H + 02 

We may also introduce homogeneous circular coordinates 
(li • %2, rji • V2) by means of the relations 

V - i 1 TT - VI 
Ç2 V2 

when the 6-parameter group of direct circular transformations 
becomes 

p£i' = «i£i + jSife, 0-771' = a2Vi + ftWî, 

py = Till + 8i?2, <rV2 = 72̂ 71 + à2rj2* 
The indirect circular transformations come by combining 

these direct transformations with an interchange of the f's 
with the Vs. 

I t will be seen that the formulae just written are identical 
with those used in §2, except that S and H now take the 
place of X and F, and that , for real points, S and H are 
complex. Hence, disregarding questions of reality, the 

* Cf. my book, Über die Reihenentwicklungen der Potentialtheorie, 
Leipzig, Teubner, 1894, p. 27, footnote. The whole treatment there 
given was written under the inspiration of Klein. 

t Cf. E. v. Weber, loc. cit., p. 382. 
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general theorem at the beginning of this section follows again, 
this time without reference to quadric surfaces. 

A systematic presentation of the geometry of inversion 
from the point of view here explained, namely that the infinite 
region consists of two minimal lines intersecting in a real 
point, would be most desirable. In it, two distinct circles 
intersect in only two points, the circular points at infinity of 
projective geometry having now no existence. Every circle, 
to be sure, has two ideal points, namely the imaginary points 
where it cuts the ideal minimal lines; but these points are in 
general different for different circles. In the case of concentric 
circles, which have no finite points in common, these ideal 
points are the same for one circle as for the other. Two dis
tinct circles always intersect in two and only two points, 
which may coincide, in which case we say the circles are 
tangent; and the same is true of a circle and a line (not mini
mal), or of two lines (not minimal); but a minimal line meets 
a circle or an ordinary line in only one point, so that there is 
no possibility of contact here. 

As a final illustration of the desirability of this point of 
view I mention the subject of foci. According to the ordinary 
definition, a focus of a plane curve is a point of intersection 
of two minimal lines, one of each set, both of which are 
tangent to the curve. The scope of this definition is not, 
however, coextensive in the projective plane and in the plane 
of the geometry of inversion, since contact at infinity means 
something very different in the two cases. Thus, in the 
projective plane, the center of a circle is its focus, since the 
minimal lines through the center touch the circle at the 
circular points at infinity. In the plane of the geometry of 
inversion, a circle has no focus (any more than a straight 
line has) since, as we have just noted, a minimal line cannot 
touch it. Since in the plane of the geometry of inversion the 
6-parameter group of circular transformations is without 
exception a contact transformation, and carries minimal lines 
into minimal lines, it is clear that the relation of a focus to a 
plane curve is always invariant with regard to circular trans
formations. 

The reader should contrast the perfect simplicity and 
generality of such statements as we have just been making 
with the far less perfect form the geometry of inversion takes 
when we use the projective plane and therefore have the 
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circular points at infinity as fundamental points of the trans
formations of the group. * In order to get the complete benefit 
of our point of view, a suitable terminology (which should be 
neither uncouth nor very extensive) should be introduced. 
In particular, some name should be given to the class of curves 
consisting of all circles, and all lines which are not minimal 
lines. If, following the analogy of § 2, we call such curves 
bilinear curves and those which consist of a pair of minimal 
lines singular bilinear curves, we may say: any two distinct 
non-singular bilinear curves intersect in two points either 
distinct or coincident. Let the reader enunciate completely, 
and correctly the facts in the projective plane which correspond 
to this, and he will get some idea of the gain in simplicity to 
which we have referred.f 

§ 5. Three-Dimensional Space. 

In one-dimensional geometry (the straight line) there is no 
distinction between the three kinds of spaces with which we 
have been dealing, the groups of transformations in the three 
cases being identical. 

In two dimensions, we have seen that two of the three 
geometries differ only in questions of reality, while the third, 
projective geometry, is essentially different from them. 

When we get above two dimensions, all three geometries 
are essentially different even without the introduction of 
questions of reality. For the sake of simplicity, we confine 
ourselves to three dimensions. Unless the contrary is stated, 
we suppose all quantities to be complex. 

The three dimensional projective space with its plane at 
infinity is so familiar that a mere reference is sufficient. The 
group is, of course, the 15-parameter group of all non-singular 
coUineations. 

In the space of analysis we have the 9-parameter group 

a i X + j8i atY + fc _ asZ + fo 
yiX+bx9 * 72Y+Ö29 L yzZ+ ô3 ' 

* Cf. the classical treatment given from this point of view by Darboux 
in his book, Sur une Classe remarquable de Courbes et de Surfaces algé
briques, 1872. 

t We mention, in passing, that it is perfectly possible to study projective 
geometry in the plane of analysis or in the plane of the geometry of inver
sion. The coUineations will then, in general, be quadratic transformations 
with the double point at infinity as a fundamental point and the ideal 
ground-lines (or minimal lines) as fundamental lines. 
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where we suppose the determinant of each of these three 
linear functions to be different from zero. The planes 

X = const., Y = const., Z = const. 

we speak of as the three sets of ground-planes; and the lines 
parallel to the coordinate axes, as the three sets of ground-
lines. We then introduce our ideal points, precisely as in §2, 
so that they completely fill three ideal ground-planes; one 
belonging to each set. These ground-planes intersect in three 
ideal ground-lines, one of each set; and all three ideal ground-
planes (and also all three of the ideal ground-lines just men
tioned) have one and only one point in common, the triple 
point at infinity. Our nine-parameter group is then, with
out exception, a one-to-one continuous point transformation. 
It carries over every ground-line (or ground-plane) into another 
ground-line (or ground-plane) of the same set. The whole 
subject may be developed farther along precisely the lines of §2. 

Finally in the geometry of inversion we deal with the 
10-parameter group of circular transformations generated by 
all motions, reflections in planes (not minimal), and inversions 
in spheres (not null). By entirely elementary computation 
we find that these generating transformations all carry over 
minimal lines into minimal lines, except that an inversion 
throws all the minimal lines through the center of the sphere of 
inversion to infinity. Moreover the points on these minimal 
lines are the only points which are not transformed. The 
minimal lines through a point form a minimal cone, and 
every minimal cone is carried into another minimal cone, with 
the exception just noted of the minimal cone with vertex at 
the center of inversion, which is thrown to infinity, and also 
with the exception of the minimal cones whose vertices are 
on the minimal cone just mentioned. Such a minimal cone 
becomes a minimal plane, and, conversely, every minimal 
plane becomes a minimal cone of the kind last mentioned. 
The generating transformations other than inversions of 
course carry over minimal planes into minimal planes. 

Out of this complexity we can bring the most beautiful 
order by introducing ideal points of which one is real (the 
point at infinity of the real geometry of inversion) and all the 
others imaginary, and which fill completely a minimal cone 
with the real ideal point as vertex. A minimal cone being 
defined as the locus of all minimal lines through a given point, 
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the minimal planes now appear merely as special cases of 
minimal cones, namely those whose vertices are imaginary 
ideal points. We may now say, without exception, that 
in the space of the geometry of inversion, as thus formed, the 
10-parameter group of circular transformations is a one-to-one 
continuous transformation which carries over every minimal 
line into a minimal line. All this may be put on a firm founda
tion most conveniently by using as an analytic instrument 
Darboux's pentaspherical coordinates. 

The simplest class of surfaces in this geometry (we will call 
them linear surfaces) consists of all planes and spheres. 
Among these we distinguish the singular surfaces, namely 
the null spheres (or minimal cones) of which, as we have seen, 
the minimal planes form a special case. Not only will linear 
surfaces go into linear surfaces (remaining singular if they 
were so originally) but any two non-singular (and also any 
two singular) linear surfaces are equivalent with regard to 
the 10-parameter group of circular transformations. 

Here, again, the circle at infinity of projective geometry 
has no existence. Every sphere has ideal points, namely 
the points of the curve in which it meets the ideal minimal 
cone, and this curve may properly be called a circle since it is 
the intersection of two spheres, namely the given sphere and 
any sphere concentric with it. Two spheres which are not 
concentric will, however, not pass through the same ideal 
circle, as they do in projective space, but through different 
ones. 

We recalled at the beginning of §4 an important result of 
Klein. If we take as our quadric surface a real, non-singular 
quadric with real points but imaginary generators, or, in 
particular, a sphere, that result may, as is well known, be 
stated more precisely as follows: 

When we consider questions of reality the geometry of inversion 
in the plane is abstractly identical with the projective geometry 
of a sphere with real non-vanishing radius and real center. 

The import of this statement is not merely that there 
is a one-to-one correspondence between the points of the 
sphere and the points of the plane of the geometry of inversion 
of such a sort that real points correspond to real points, but 
also that there is a one-to-one correspondence between the 
circular transformations of the plane and the collineations of 
the spherical surface into itself. The most elementary way 
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of establishing this correspondence is, of course, by means of a 
stereographic projection of the plane on the sphere. Now 
this stereographic projection may also be regarded as an 
inversion of space which carries over the plane into the sphere. 
We thus look at the sphere as lying not in projective space but 
in the space of the geometry of inversion, and we are thus led 
to inquire whether the transformations of the sphere into 
itself with which we are concerned may not also be obtainable 
by means of a subgroup of the 10-parameter group of circular 
transformations of space. A count of constants (10 — 4 = 6 ) 
suggests that there should be a 6-parameter group of circular 
transformations of space which carry over the sphere into itself• 
A closer examination shows that this is actually the case, but 
that instead of there being a one-to-one correspondence 
between the circular transformations of the plane and the 
transformations of this subgroup, the correspondence is one-
to-two; either of the two circular transformations of space 
which give the same transformations of the sphere into itself 
being obtainable from the other by following, or preceding, it 
by an inversion in the given sphere. Thus we get the geometry 
of inversion of the plane either by considering the 6-param
eter group of collineations of projective space which carry 
over a real non-singular sphere into itself or the 6-parameter 
group of circular transformations of the space of inversions 
which carry over a real non-singular sphere (or a real plane) 
into itself. 

If what has here been said does not persuade all readers of 
the desirability of using, on occasion, other spaces than pro
jective space, it is hoped that it may at least make clear the 
desirability of stating explicitly in all cases what space it is 
that is being used. Papers dealing with transformations 
which throw points to infinity are not in a satisfactory form 
unless it is made clear what infinite region is assumed. 
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