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SOME THEOREMS ON THE CONVERGENCE OF 
SERIES. 

BY PROFESSOR R. D. CARMICHAEL. 

(Read before the American Mathematical Society, September 8, 1913.) 

No general criteria are known for the study of the con
vergence of a series of complex terms* when the series does 
not converge absolutely. The object of this note is to general
ize one of the few important special methods which are 
already available for such study. The theorems obtained are 
of general applicability; but their practical value lies chiefly 
in their use in investigating the convergence of series which do 
not converge absolutely. 

In § 1 I give two lemmas which are valuable in themselves; 
the second is fundamental in the present paper. In § 2 
are two general theorems concerning the convergence of 
series of constant terms, where the convergence need not be 
absolute. They are generalizations of important results due 
to Dedekind. In § 3 two corresponding theorems for uniform 
convergence are given. 

§ 1. Statement and Proof of Two Lemmas.—It is convenient 
to begin with the proof of two lemmas. 

LEMMA I. Let si, s2, s%, • • • be any infinite sequence of 
numbers having the finite limit s. Then 

T,ik 
k+l' 

k being a positive integer or zero."\ 
If e is any positive number there exists a positive integer t 

such that \si — s\ < e/2 for every value of i greater than t. 
For n > t, let us write 

1 w 1 * ik 1 n ik 1 n ik 

* The same statement is also true of the special case where the terms are 
real and are alternately positive and negative. 

t For the case when k = 0 the lemma has been proved by Cesàro, 
Darboux's Bulletin (2), 14 (1890), pp. 114-120. See Whittaker, Modern 
Analysis, p. 26. 
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Then we have 
1 n 1 » nk 

±-Yiks— - V — - r a f e i ' ni£+ix ' 

L4 n — t € 
"̂  w + n 2 ' 

where A is a positive constant such that \s>\ < A for every L 
It is clear that an N exists such that the last member is less 
than e for every n greater than N. Therefore it follows at 
once that we have 

r i n 1 n ik ~\ 
lim -jzz^&Si ]£ -** = °* 
w=oo L ™ feî w *S+i nh J 

Now, 
1* + 2k + 3* + • • • + nk = p j ^ + 2 nk + • • •, 

the second member being a polynomial in n- of degree k + 1; 
hence we see readily that 

=oo n iS+! nk S
 w=00 w*41 "" ft + T 

From this and the preceding limit follows at once the limit 
given in the conclusion of the lemma. 

COROLLARY. Let s\, 8%, ss, • • • be an infinite sequence of 
functions of the complex variable x regular in a given closed 
domain D and converging uniformly to the limit function s. 
Then the limit 

I n 

exists uniformly in D and is s/(k + 1 ) . 
Certain obvious verbal changes in the proof of the lemma 

lead readily to the proof of the corollary. 
LEMMA I I . Let si, $2, #z, • • • be any infinite sequence of 

numbers having the finite limit s. Then every solution un of 
the difference equation* 

LA Ufi = = Sn 

* We suppose here that a solution is denned only for non-negative 
integral values of the argument n. 
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has the property that 
y Un S^ 

If ün is any particular solution of the equation, then the 
general solution is 

un = «o + ocin + a2n
2 + • • • + ajc~.ink~~x + ün, 

where ao, ai, a2, • • •, a*-i are independent of n. Hence, if 
the conclusion of the theorem is valid for any particular 
solution ün of the equation, it is valid for every solution. 
Accordingly we shall prove it for the particular solution defined 
thus: Write 

n 

A^ün = X > ; = nsn™ (n > 0). 

Then, by Lemma I, we see that lim sn
a) = s. Then write 

w=oo 
n 

A*-2M„ = J2isiw = nW2) (n > 0). 

We have lim sn
(2) = s/2l, as we see again by aid of Lemma I. 

« = 0 0 

By continuing thus, the proof of the lemma is readily com
pleted. 

COROLLARY. Let si, s2, s$, • • • be an infinite sequence of 
functions of the complex variable x regular in a given closed 
domain D and converging uniformly to the limit function s. 
Then every solution un of the difference equation 

AkUn = Sn 

which is regular throughout D has the property that 

v Un 
l i m ~ l 
w=oo U 

exists uniformly in D and is s/kl. 
The modifications of the preceding argument, which it is 

necessary to make to establish the corollary, are obvious. 

§ 2. Two Theorems on the Convergence of Series of Constant 



228 CONVERGENCE OF SERIES. [Feb. , 

Terms.—We are now in position to prove the following 
theorem: 

THEOREM I. Let a\} a2, a3, • • • he any infinite sequence of 
numbers such that each of the limits* 

(1) limSn<*>, l i m n S ^ , limn2S„(*-2\ •••, l imn^SJ» 
u=oo n=oo w=oo «=oo 

exists and is finite, where 

Sn
a) = ai + a2 + • • • + any 

Sn™ = &<» + S2
(1) + • • • + S,(1), 

Sn<*> = s f̂r-w + &(*-« + • • • + Sn<^). 

ZeJ Ci, c2, c3, • • • be an infinite sequence of numbers such that 

(2) £ |A*Ci | 

is convergent. 
Then the series 

aiCi + a2c2 + a3c3 + • • • 

is convergent {but not necessarily absolutely convergent). 
It is easy to construct an example to show that the last 

series is not always absolutely convergent. Hence we have 
to prove only the affirmative statement in the conclusion of 
the theorem. 

If we adopt the convention that a letter with a negative 
or a zero subscript has the value zero, we may writef 

* In case k = 1 only the first of these limits is to be taken into consider
ation. The condition on the a's then is obviously the condition that the 
series a\ -f a2 + «3 + • • • converges. For this case (namely, when 
k = 1) the theorem is due to Dedekind (Dirichlet-Dedekind, Zahlen-
theorie, second edition, 1871, p. 373). It was rediscovered by Jensen. 

t Here we employ repeatedly a fundamental identity due to Abel (Crelle, 
vol. 1 (1826), p. 314; Oeuvres, 1, p. 222), namely, 

n ja, n 

] £ ViUi = £ (Vi — Vi-i)Ui = ]T Vi(Ui — Ui+i) -f VnUn+1, 

where 
Vi=vi+Vi+ ••- +Vi, i S 1, Vo « 0. 
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Sn ** t,aiCi = Z (Si(1) - Si-!*»)* 

n 

= - £ «/"Ac,- + S.WCH-I 

= - Z(S» (2) - Si-^Aa + iS^Cn-i 

= X&WA»* - S„(2)Acn+1 + <S„«c„+1 

An obvious induction proof now leads to the fundamental 
relation 

(3) Sn = ( - 1)* f ) &<*>A*c, + ( - l ^ S ^ A ^ V i 

+ ( - 1 ) M S » < ^ » A M C , H - 1 + «n(2)Acn+1 + fl^CH-l. 

In order to prove our theorem we must show that Sn 
approaches a finite limit as n approaches infinity. To do this, 
it is sufficient to prove that each term in the second member 
of (3) approaches a finite limit as n approaches infinity. 

That the first term approaches a finite limit follows from 
the convergence of (2) and the fact that (in consequence of 
the existence and finite value of the first limit in (1)) a positive 
constant A exists such that \Si(k)\ < A for every i; for then 
it is clear that the series 

£Si<*>A*c,. 

converges absolutely. 
Now the series 

Z A*c< s Z (A*-1^! - A*-1*) 

converges; and hence 
lim A*"1 cn 
w=oo 

exists and is finite. This, in connection with the existence 
and finite value of the first limit in (1), leads to the conclusion 
that the second term of the right member of (3) approaches a 
finite value as n approaches infinity. 
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Since lim A^Cn exists and is finite it follows from Lemma 
n=oo 

II that each of the limits 

(4) h m — — , hm—5—, •••, lim - ^ 

(where A°cn s= cn) exists and is finite. To see this, let us 
write 

Un(t) = A f c -^ n , 

where t is one of the numbers t = 2, 3, • • •, &. Then 

A*-W° = AHcn. 
A direct application of the lemma (for each value of t) now 
leads to the truth of the statements which we desired to 
establish. 

We retain the same range for the variable t and write 

A*-*/» ,, (<n -4- 1V""1 

(5) S.cwH)A*-W« - n«S„»-«> • gqpgS • * „t-7 . 

If n approaches infinity, it is clear (in consequence of (1) and 
the results just established) that each of the three factors of 
the second member of (5) approaches a finite limit. From 
this we see that every term in the right member of (3) past 
the second approaches a finite limit as n approaches infinity. 

This completes the proof of the theorem. 
Another valuable theorem may be obtained by making the 

restrictions on the c's somewhat stronger and weakening those 
on the a's. The special case of this theorem when k = 1 is also 
due to Dedekind (1. c , page 371). The general theorem may 
be stated as follows: 

THEOREM II. Retaining the notation of Theorem J, let us 
suppose that a positive constant B exists such that each of the 
quantities 

Snik), nSn^-v, n2Sn
(k~2), •••, n^SnW 

is in absolute value less than B for every value of n. Suppose 
further that the series 

È|A*C,-| 



1914.] CONVERGENCE OF SERIES. 231 

is convergent and 
lim A*-1^ = 0. 
n=oo 

Then the series 
aiCi + a2c2 + a3c3 + • • • 

is convergent (but not necessarily absolutely convergent). 
As before, we have the fundamental relation (3). It is 

sufficient to show that each term in the second member of (3) 
again approaches a finite limit. The first term may be dealt 
with precisely as in the preceding argument. The second term 
approaches zero, as one sees directly from the hypothesis of 
the theorem. Since limA*"1^ = 0 it follows from Lemma 

w=oo 

II that each of the limits in (4) is zero. Hence, from (5) it 
follows that every term in the right member of (3) after the 
second approaches zero as n approaches infinity. This 
completes the proof of the theorem. 

As an example illustrative of the theory, let us consider the 
series 

(6) 

where 

00 On 4- 1 

cn(p) = 1 + 2 7 + 3 ^ + 1" ^ • 

Let the constant cn of theorem II be cn(p). Then 

À C n = , , 1 N 0 , A2Cn = 
(n+iy n (n+2Y 0 + 1 ) ' WP+I i 

whence it follows that S | A2c» | converges and lim Acn = 0. 
ftssCO 

Thus cn satisfies the conditions requisite for applying Theorem 
II when k = 2. 

Put* 

a! = 2> ^ " ( - « ^ ^ T i ) ( n > 1 ) ' 

Then series (6) is identical with a\Ci + a2C2 + azcz + • • • 
except for the first term; hence it is sufficient to prove the 
convergence of the last series. We have 
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0 1 2 ' ° n 2 2-3 + 3-4 ^ l) n(n+l) 

_ . . . + ( _ 1 ) n - 1 ( i + ^ 1 ) 

S„«> = J - 5 + • • • + ( - I)""1 l 

2 3 ' ' v ' n+1' 

It is clear that <S„(1) and <S„(2) satisfy the conditions requisite 
for the application of Theorem II. 

Hence we conclude the convergence of series (6). 
§ 3. Two Theorems on Uniform Convergence.—By employ

ing the corollaries to Lemmas I and II instead of these lemmas 
themselves and making certain obvious verbal changes in the 
proofs as given in § 2, it is easy to establish the following two 
theorems: 

THEOREM III. Let a\, a2, a3, • • • be any infinite sequence of 
numbers such that each of the limits 

limSn<«, lim nS.»-», lim n2S^k~2\ •••, lim nk~lSn^ 
tt=O0 W = 0 0 W=sOO W = 0 0 

exists and is finite, where Sn
(1), • • •, Sn

(fc) have the same meaning 
as in Theorem I. Let ci, c2, Cs, • • • be an infinite sequence of 
functions of the complex variable x regular in a given closed 
domain D and such that 

t\A%\ 
converges uniformly in D. 

Then the series 
aiCi + a2C2 + azcd + • • • 

converges uniformly in D. 
THEOREM IV. Retaining the same notation as in Theorem III, 

let us suppose that a positive constant B exists such that each of 
the quantities 
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is in absolute value less than B for every value of n. Suppose 
further that the series 

ZlA*ct-i 

converges uniformly in D and 

lim AHc» = 0. 
n=co 

Then the series 
aiCi + «2̂ 2 + a^cs + • • • 

converges uniformly in D. 
For the case k = 1 both of these theorems are already 

known. This special case of Theorem III appears to have been 
first employed by Nielsen*; but Nielsen's statement of it is 
not entirely accurate, as Landauf has pointed out. The 
corresponding special case of Theorem IV is due to Cahen.J 

INDIANA UNIVERSITY, 
July, 1913. 

A TRANSLATION PRINCIPLE CONNECTING THE 
INVARIANT THEORY OF LINE CONGRUENCES 

WITH THAT OF PLANE n-LINES. 

BY PROFESSOR O. E . GLEN N . 

(Read before the American Mathematical Society, September 9, 1913.) 

A WELL known translation principle of Clebsch§ enables us 
to construct a ternary invariant by a simple algebraical 
operation upon a binary invariant. In brief, if the line ux — 0 
intersects the curve 

ƒ = ax
n = bj = • • • = 0 

in the n points given by the binary form 

* Annali di Matematica (3), 15 (1908), pp. 275-282. 
t Sitzungsber. d. K. Bayer. Akad. d. Wiss., Phys.-Math. Classe, 1909. 
J Annales scientifiques de VEcole Normale Supérieure (3), 11 (1894), p. 79. 
§ Clebsch, Vorlesungen über Geometrie, vol. 1, p. 276; and Journal fur 

Math., vol. 59 (1861). 


