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1. IN the winter semester of 1890-91, when he lectured on 
algebra for the last time, Kronecker developed a theory of the 
algebraic equation with numerical coefficients to which he 
attached a great deal of importance but which unhappily 
he did not live to publish. Professor Hensel, of Marburg, 
Kronecker's literary legatee and editor of his works, possesses 
notes of these lectures which he kindly placed in my hands 
last summer with the very generous permission to make any 
use of them I might wish. In reading these notes, I came 
upon the theory to which I have referred, and it seemed to me 
so characteristic of Kronecker and so full of interest for the 
algebraist that I have chosen it for the subject of this address. 

All who have read Kronecker's later writings are familiar 
with his contention that the theory of the algebraic equation 
in its final form must be based solely on the rational integer, 
algebraic numbers being excluded and only such relations 
and operations being admitted as can be expressed in finite 
terms by means of rational numbers and therefore ultimately 
by means of integers. These lectures of 1890-91 are chiefly 
concerned with the development of such a theory, and in 
particular with the proof of two theorems which therein take 
the place of the fundamental theorem of algebra as commonly 
stated. 

The first of these theorems relates to equations whose 
coefficients are rational functions of one or more variables 
and is characterised by Kronecker as the fundamental theorem 
of algebra in the algebraic sense. It is: 

For every given algebraic equation 

F{x) = xn - dx71'1 + • • • + ( - l)ncn = 0 

there exists a congruence of the form 

F(x) = (x — xi)(x — x2) • • • (x — xn) (moddfi — c*, g — c), 
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where the x/s are variables, the f is are the elementary symmetric 
functions of the x/s, c belongs to the domain of rationality of the 
coefficients d, and g is a rational, integral, but in general non-
symmetric function of the xis whose form depends on the alge
braic character of F(x), and is such that the modular system whose 
elements are thefi — d and g — c is prime. 

Here, as always in Kronecker's algebraic writings, "exists" 
means "can be actually found by a limited number of ra
tional operations." I shall not attempt to sketch the proof 
of this theorem since that would necessitate giving an account 
of a large part of Kronecker's arithmetical theory of algebraic 
functions. Moreover the theorem is fully discussed in the paper 
entitled "Ein Fundamentalsatz der allgemeinen Arithmetik" 
(Journalfür die reine und angewandte Mathematik, volume 100). 
I have stated it mainly to give some indication of the method— 
the use of indeterminates, such as the x/s, and modular sys
tems—by which Kronecker makes the introduction of the 
algebraic numbers unnecessary when the isolating of conjugate 
numbers is not required. That it is unnecessary in the latter 
case also Kronecker shows in his paper "Ueber den Zahl-
begriff " (Journal für die reine und angewandte Mathematik, 
volume 101) and in the demonstration which follows. 

Kronecker's second theorem, "the fundamental theorem of 
algebra in the arithmetical sense," relates to equations with 
rational numerical coefficients. It is: 

Every rational integral function f(x) of the nth degree with 
rational numerical coefficients can, by a variation of the coefficients 
which is definite in character but as small as one may please, be 
reduced to a product of v linear and (n — v)/2 quadratic factors, 
all with rational coefficients, v being an integer determined by the 
coefficients off(x). 

As hardly need be said, to establish this theorem in a manner 
meeting the requirements of the theory of which it forms a 
part, one must, without going beyond the domain of the 
rational numbers and therefore without at any point assuming 
the existence of linear factors of f(x) or of roots of f(x) = 0, 
derive a general method by which in the case of any given 
function the requisite variation of the coefficients may be 
obtained directly from the coefficients themselves. I shall 
give Kronecker's proof modified in certain particulars for 
convenience of exposition. 

2. Since it is evidently only necessary to prove the theorem 
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for the case in which f{x) has no multiple factors or linear 
factors with rational coefficients, we shall suppose f{x) to be 
without such factors. Then f(x) = 0 has no rational roots, 
and therefore, from Kronecker's standpoint, no roots. But it 
may be the case that, 8 representing a positive number taken 
as small as we please, there exist one or more ^-intervals 
(#', x") such that 

ƒ(«') ƒ(«") < 0 and \f(x) | < 6 for x' S * S *"-

Any such interval we shall call a zero interval of f(x), or, when 
convenient, a "root" of ƒ Or) = 0. 

Every interval (a, b) such that f (a) ƒ (6) < 0 contains at least 
one zero interval of f{x). 

For if a<x<x+h<b, and g denote any number greater 
than all the values of | fir)(x)/r! \ (r = 1,2, • • •, n) in (a, 6), we 
shall have | f(x + h) - f(x) \ < 5 when h<i/\g+b\. Find 
an integer v such that (b — a)\v < d/(g + S), and divide (a, b) 
into v equal sub-intervals. Among these, since f (a) f(b) < 0, 
there will be at least one, {av, bv), such that f(av) f(bv) < 0. 
Moreover if x denote any number in (av, bv), both \f(x) — 
f(av) | < S and | ƒ (&„) — fix) \ < S, and either f(av) f{x) < 0 
or f(x) f(bv) < 0, and therefore | f(x) \ < 5. Hence {avibv) is 
a zero interval of ƒ(#)• 

If throughout an interval (a, 6), | f'(x) | > c, where c denotes 
some positive number, and if £ denote any number in (a, b), then 

sgn / ' (ö=sgn[ / (6 ) - / (o ) ] . 

That the sign of ƒ'(#) is constant in (a, b) follows from the 
preceding theorem. And if a < x < x + h < b, and # have 
the same meaning as above, then since f{x + h) — ƒ(#) = 
^ f 0*0 + ¥"0*0/2! + • • • ], we shall have sgn[/(a; + h) - f(x)] 
= sgnf(aO when | hf"(x)/2\ + • • • | < | f'(x) | and therefore 
when h < c/(c + #). Hence, if (a, b) be divided into intervals 
(Xi, Xi+i) of the magnitude c/(c + g) or less, we shall have 
sgnLfO*^+i) ~~ ƒ(#*)] = sg n ƒ'(£) f° r every value of i and there
fore sgn[/(6) - f (a)] == sgn ƒ' «p. 

From this theorem it immediately follows that if | f(x) \ > c 
throughout (a, 6), (a, 6) will contain a sub-interval (#', x") 
in which | /(ir) | < ô only when f (a) f(b) < 0, and then but one 
such sub-interval. It also follows that: 

Between two consecutive zero intervals off(x), (#/, Xi") and 
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(xz, x2"), in both of which \f(x) | > c, there is a zero interval of 
fix). 

For sgn ƒ'(*") = sgn[ƒ(<*") - M O ] = s g n M ' 0 = sgnMO 
= - sgn[M'0 - M ' ) ] = - sgn/'feO. 

It is therefore evident that we shall be able to isolate the 
zero intervals of fix) if we can determine the size of an interval 
in which there cannot be both a zero interval of f(x) and one 
of ƒ'(#). As will be shown, this can be found from the identity 
D = P(x) fix) + Q(x) fix) connecting fix), fix), and the 
discriminant D of fix). We therefore proceed to establish 
this identity by a method which does not assume the existence 
of linear factors of an integral function. 

3. The necessary and sufficient condition that the functions 
m m 

F(x) = I I (* - Xi) = Xm + E (~ iyfrXm~r 

i = l r—1 

and 

G(x) = I I (x - yk) = *» + £ ( - V)rgrx"-r 

have a common factor is the vanishing of the rational integral 
function of the coefficients fr, gr, defined by 

Res (F, G) = I I (Xi - yk) = I I <?(**) 
ih i—1 

= (-l)mnf[F(yk) = R(fr,9r). 
k=\ 

The roots of the equation Fix) Gix) = 0 being x\, • • •, a, 
Vu " 'f yn, and the expressions for Rifr, gr) in terms of these 

m n 

roots being H#(#*), (— l)mnTLFiyk), we have, by the inter-

polation formula of Lagrange, 

m FM IlGiXi) 
B ( / r , y r ) = G ( * ) Z ^ - 4 

i==1x — XiGixi)F'ixi) 
n 

n 0M UF(yk) 
+ ( - l ) " " J ' ( aOE; *=* *=i* - ykF{yk)G'{yh) 

Evidently the coefficient of G(x) in this identity can be reduced 
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to the form S7=Bl[a0(x»)a;m'"1 + • • • + am-i{xl)]lF,{x%)y where 
cio(xi)f • • •, am-i(xi) are integral functions of the fr, gr and of 
Xi, of degree not higher than m — 1 in Xi. But, by Euler's 
formulas, X^xf/F'ixi) = 1 or 0 according as X = m — 1 or 
< m — 1. Therefore the coefficient of G(x) is a polynomial 
#>(#), of degree ra — 1 at most, with coefficients which are inte
gral functions of the fr, gr. The coefficient of F(x) is reducible 
to a polynomial ^(#) of like character of degree n—1 at most. 
Therefore 
(1) fl(/r, * ) = <p(x) G(x) + 4,{x) F(x), 

where <p(x) and \//(x) have the character just indicated. 
Let 

m 

Fi(x) = xm + X ( - l)rcro;w-r 

and 
n 

flk(») == zn + Z ( - l)rd^n~"r 

be functions with any given rational coefficients and which 
therefore are in general not resolvable into linear factors. 
We are to prove that the vanishing of R(cr, dr) is the necessary 
and sufficient condition that Fi(x) and Gi(x) have a common 
factor. 

If in (1) we set/ r = cr, gr = dr, we obtain an identity of the 
form 

(2) R(cr, dr) = <PI(X)G1(X) +&(x)Fi(fi), 

from which it immediately follows that, if Fi(x) and G\{x) 
have a common factor, R(cr, dr) must be 0. And we can show 
as follows that if Fi(x) and G\(x) have no common factor, 
R(cr, d,) cannot be 0. 

For if Fi(x) and Gi(x) have no common factor, we can by 
means of the euclidean algorithm derive an identity of the 
form 1 = Pi(x)Fi(x) + Qi(x)Gi(x), where Pi(x) and Qi(x) are 
integral functions of x. This identity may be written 

1 = F(x)P!(x) + (?(*)&(*) + (F1(x) - F(x)) P1(x) + 

(G1(x) - G(*))Gi(a), 
from which it follows that 

1 = F(x)P!(x) + G(x)Qi(x) (modd fr - cr, gr - dr). 
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Setting x = xi, x%, • • *, xm> successively, and taking the product 
of the resulting congruences, we have 

1 s nö(a<)n&(s<) s B(/ r, jfr) • T(/r) (modd fr - cr, ̂  - dr), 

where T(/r) is an integral function of the / / s . Therefore 
finally, setting fr = cr, gr = dr, we have 

1 = R(Çr,dr)-T(ftr), 

from which it follows, since T(cr) cannot be infinite, that 
R(cr, dr) is not 0. 

In the following discussion, by the resultant of two func
tions of the form f(x) = cQxm — Cix™"1 + . . . + (— l)mcm and 
g(x) = d0x

n — dix""1 + ••• + (— l)ndn, we shall mean the 
number R = CondomR[cr/co, dr/do], and by the discriminant of 
f(x) we shall mean D = Res(ƒ, /')/co- Evidently J? and D are 
integral when the given coefficients are integral. 

4. Let f(x) = jr^a&r* and <?(#) = S7=06^m""* be two poly
nomials with integral coefficients and having no common 
factor, whose resultant R is therefore an integer different 
from 0. By means of the identity R = P(x)f(x) + Q(x)<p(x) we 
can determine an integer s such that no interval of the magni
tude 1/s will contain zero intervals of both f(x) and <p(x). 

For if xi, X2 denote any two values of x, we have identically 

(1) R = p{Xl)t^^l^l {X1 - *2) + PfoO/fo) + Q(x1)<p(x1). 
X2 ~"~ X\ 

Since | a0z
n | > | aix""1 + • • • | for | x \ > (| a0 \ + ag)/ \ aQ J, 

where ag denotes the greatest of the numbers | a»- |, and simi
larly | box™ | > | hx™-1 + . . . I for | x | > (| bo | + bg) l\ bo |, all 
the zero intervals of f(x) and <p(x) lie in the interval (— c, c), 
where c denotes the first integer greater than both the num
bers (| a0 | + a„)j | a0 | and (| b0 \ + bg)/\ b0\. 

Let K denote the greatest of the three numbers derived from 

P M * + ? - * > - » < * , ) , P(x), and m 

by replacing the coefficients by their absolute values, x by 
c, and cr by 1. Then any integer s such that 

(2) K<(s-1)\R\ 

will meet the requirement stated above. For if s satisfy (2), 
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and if also — c < Xi, x2 < c and | xi — x* \ < 1, it will follow 
from (1), by dividing throughout by ( s — 1) | R |, that 

^ — j - <\XL-XI\ + 1/(0:2) I + \<p(x{) I 

and therefore, if [ x± — x* | < 1/s, that 

(3) \f&)\ + \<p(xi)\>^hry 

But since Xi, x% are independent variables subject only to 
the conditions — c < Xi, x^< c and | X\ — #21 < l/*> it 
follows from (3) that no interval of the magnitude 1/s can 
contain zero intervals of both fix) and <p(x). On the contrary, 
if it contains a zero interval of one of the functions, the other 
will remain numerically greater than l/s(s — 1) throughout 
the interval. 

We are now in a position to isolate and count the zero 
intervals of any polynomial f(x). For if in the preceding 
discussion we suppose <p(x) = fix) and, having determined 
s, divide the interval (— c, c) into equal sub-intervals of the 
magnitude 1/s it follows from § 2 that those only of these sub-
intervals contain zero intervals of f(x) at whose extremities 
f(x) has opposite signs, and that each such sub-interval contains 
one and but one zero interval of f(x). Hence the number of 
such sub-intervals is the number of the zero intervals of ƒ(#). 
And since sgn ƒ(— c) = sgn f(c) or sgn ƒ(— c) = — sgn /(c) 
according as n, the degree oîf(x), is even or odd, the number v 
of the zero intervals oîf(x) is even (or 0) or odd according as n 
is even or odd. 

5. We are now equipped for proving that part of Kronecker's 
theorem which relates to the linear factors. For to the condi
tions used in determining s in § 4 let us add, for the case in 
which #>(a?) = fix) and therefore R = D = Disc fix), the 
following: 

< is - 1) I D |, for J x I < c and | <r | ^ 1. 

Then, for x\, x% such that — c < xi, x2 < c and | afc — a* | < 1, 
we have 
(1) I ƒ(<*) - M ) I < (* - 1) I D | . | xt-xù. 
Divide ( — e, c) into equal intervals of the magnitude 1/*, and 

fix + a)-f(x) 
a 
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of these intervals let (xr, x") be any one such that ƒ(#') fix") 
< 0. Then, r denoting an integer which may be taken as 
great as we please, divide (xr, x") into r\D\ equal sub-intervals. 
Of these sub-intervals there will be one and but one at whose 
extremities f(x) has opposite signs. If this sub-interval be 
(£', £"), it follows from (1) that, if ê ' ^É^ê" , then both 
I ƒ(€) - ƒ(?) I < 1/r and | ƒ(*") - ƒ(£) | < 1/r and therefore, 
since either/(r) ƒ(*) < 0 or ƒ(£) ƒ(£'•') < 0, that | ƒ(£) J < 1/r. 
Hence (£', £") is a zero interval of f(x) characterized by 
the inequalities 

(2) ƒ(?) ƒ(«") < 0 and | / ( ö | < 1/r for ? ^ * ^ £"• 

There are *> such sub-intervals (§ 4). Represent them by 

(3) (&', fc"), (&', &"), • • • (€/ , £,")• 
We are to prove that if £; denote any number in (£/, £/'), w e 

can reduce ƒ(#) to the form 

(4) f(x) = (a - &)(* - & ) . . . ( * - &)<2(a» + fi(a), 

where Q(a?) is a polynomial without zero intervals and R(x) 
a polynomial whose coefficients are as small as we please. 

Represent n^=1 (x — £*) by $>(&)• Then since JB(&) = ƒ(£&) 
f or & = 1, 2, • • -, v, we have, by the interpolation formula of 
Lagrange, 

(5) *=î ^ (60 » — & 

But *>'(60 = n(& - €•) (i = 1, 2, . . -, k - 1, ft + 1, . • -, v) 
and | & — £»• | > 1/*. For between the intervals (£/, £i") 
and (£2', £2"), say, there lies at least one interval (77', 77") of 
magnitude 1/rs | D | which is a zero interval of f(x), and if rf 
denote any number in (77', rj"), since no interval of the mag
nitude 1/s can contain zero intervals of both f(x) and ƒ'(#)> 
we have rj - & ^ 1/s - l/w| D\, & — 77 ̂  1/̂  — 1/r* | 2) [ 
and therefore £2 — 61 ^ 2/* — 2/rs | Z) |. Hence £2 — 6L> 1/* 
if, as we shall suppose, r\D\ ^ 2 . Therefore 

ƒ (&) 
*'(&) 

<S— (fe= 1,2, . - . , ^ . 

Again <p(x)/(x — 6*) is a polynomial in a;, of degree j> — 1, whose 
coefficients after the first are less respectively than the numbers 



1914.] AN UNPUBLISHED THEOREM OF KRONECKER. 347 

(y - l)c, (v - 1)0> - 2)c2/2, • -, cT1. Therefore, if k 
denote an integer greater than all these numbers, it follows 
from (5) that R(x) can be reduced to the form 

(6) R(x) = ^—-S(x) = ~8(x)9 if r = vs^kr', 

where the coefficients of S(x) are all numerically less than 1, 
and r' is an arbitrary integer which may be taken as great as 
we please, great enough, therefore, to make the coefficients of 
R{x) as small as we please. 

Moreover r' can be so taken that Q(x) will have no zero 
interval. For Q(x) will have no zero interval if f(x) — R(x) 
has, like ƒ(#), v zero intervals. But consider the polynomial 
ft(x) = f(x) — tR(x), where t is supposed to vary (through 
rational values) from 0 to 1, and therefore ft(x) from f(x) to 
f(x) — R(x). It will be proved in the following section that 
the number of the zero intervals of a polynomial with variable 
coefficients changes only when the coefficients pass through 
values for which the discriminant of the polynomial vanishes 
(that is, becomes less than any assignable number). Hence, 
as t varies from 0 to 1, the number of the zero intervals of 
ft(x) is always v unless Disc ft(x) vanishes. But Disc ft(x) can 
be reduced to the form D + x{/, where \p is an integral function 
of the coefficients of fix) and tR(x), and therefore cannot 
vanish if | \f/ \ < \ D |. But it will readily be seen that 
| \p | < | D | if, g denoting the greatest coefficient in the develop
ment of D[\ a01, • • • | an-v |, | an_H-i | + 1/r', • • -, \an\ + l / r ' ] 
in powers of 1/r', we take rf such that 1/r' < | D |/(| D | + g). 
Therefore if r' > (| D \ + g)/\ D |, Q(x) will have no zero 
interval. 

6. But it remains to show that for a polynomial with variable 
coefficients the vanishing of the discriminant is the necessary 
condition for a change in the number of zero intervals. 
Kronecker establishes this theorem by aid of the notion of the 
characteristic of an equation or integral function. 

Let V(x) and W(x) be two polynomials of the same degree 
with rational coefficients and such that R(V, W), R(V, V), 
and R(W, Wf) are all different from 0; and let 

\V{x)W (x) I 
(1) A(s) = 

V\x) W'(x) ! 
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By the method of § 4 determine an integer s such that no 
interval of the magnitude 1/* contains two zero intervals 
of <p(x) = V{x) W(x), and, representing the interval in which 
all the zero intervals of <p(x) lie by (— c, c), divide (— c, c) 
into equal intervals (xi, #2), (#2, #3), • • • of the magnitude 1/s. 
Represent each of these intervals which is a zero interval of 
V(x) by any number £ belonging to the interval, and let rj have 
the corresponding meaning for W{x) and J* for <p(x). Finally 
let the symbol sgn f(x) mean 1 or — 1 according as f(x) is 
positive or negative. 

If (xi, Xi+i) be a zero interval of <p(x), we have, by § 2, 
sgn^(f) = sgn [^(ai+i) — <p(xj)] = Msgnp(&ifi) - sgn <?(#;)]. 
But if (xi, Xi+i) be not a zero interval, sgn <p(xi+i) — sgn <p(Xi) 
= 0. Therefore if 2^ denote a sum extended over all the zero 
intervals of <p(x), we have, since the degree of <p(x) is even, 

2^ sgn p'(f) = |sgn <p(c) — |sgn <p(— c) = 0, 
that is, 
(2) 2^ sgn F ' (ö ÏF(Ö + S, sgn Ffo) W'(a) = 0, 

the sums 2$ and 2,, being extended over all the zero intervals of 
V(x) and W(x) respectively. And from (1) and (2) it at once 
follows that 
(3) 2^ sgn A(8 = 2 , sgn A(rj). 

The integer or fraction X(V, W) defined by the equations 

(4) X(7, W) = - *2* sgn A(£) = - *2„ sgn Afo) 

is called the characteristic of the functions V(x) and W(x). In 
particular 
(5) X ( F , F + F ) = |S fSgnF ' 2 ( a 

Therefore since sgn F/2(£) = 1, the number of the zero intervals 
of any polynomial V(x) which has no multiple factors is 
2X(F, V+ V), or, more simply, 2X(7, F ) , if in defining 
X(F, F') we restrict ourselves to the first of the equations (4). 
It is convenient to call X(F, V') the characteristic of V(x). 

If V(x) = 2"=0 ViX\ W(x) = 2"=0 WiX*, and the coefficients Vi, 
Wi are supposed to vary continuously (through rational values), 
the only possibilities of a change in the value of X(F, W) are 
such as present themselves when the vi9 Wi pass through 
values for which A(F, W) = V{x) W'(x) - V'(x) W(x) van
ishes (that is, becomes numerically less than every assignable 
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positive number 8) at the same time as either V(x) or W(x) 
that is, when (1) V(x) = 0 and W(x) = 0, or (2) V(x) = 0 and 
V'(x) = 0, or (3) W(x) = 0 and W'(x) = 0. But, for all 
values of the parameter t, 

V(x),W(x) 

V'(x),W'(x) 

V(x),W(x)-tV(x) 

V'(x),W'(x)-tV'(x) 

V(x)-tW(x),W(x) 

V'(x)-tW'(x),W'(x) 

and therefore X(7, W) = X(V, W- tV) = X(V - *TF, TF), 
and the only one of the possible conditions for a change of value 
(1), (2), (3) which is common to these three expressions for 
X(F, W) is (1) V{x) = 0 and W(x) = 0; since for any values 
of Vi, Wi, and x for which V(x) W'(x) — V'(x) W(x) vanishes (ex
cept those for which both V(x) and W(x) vanish), t may be so 
chosen that both W{x) — tV(x) and V(x) — tW(x) are dif
ferent from 0. Therefore 

The characteristic X(F, W) of two polynomials V(x), W(x) 
with variable coefficients can change only when the resultant 
R(V, W) vanishes. 

The characteristic X(F, V') of a 'polynomial V(x) with vari
able coefficients, and therefore the number of the zero intervals of 
V(x), can change only when the discriminant D(V) vanishes. 

7. From the equations (4) and (6) of § 5 it follows that 

(1) f{x) - S(x)/r' = (z - &)(* - £ ) • • • ( * - £ ) Q(x). 

We have therefore shown for any polynomial /(cc) = 2 , 
which has rational coefficients and v zero intervals that by a 
change in the coefficients an-v+i, • • -,an which is as small as we 
please the polynomial becomes resolvable into a product of v 
linear factors and a factor Q(x) which has no zero intervals, 
all these factors having rational coefficients. For the case in 
which v = n, the proof of Kronecker's theorem is now com
plete. But for the case in which v < n, it remains to prove 
that, by another variation of the coefficients as small as we 
please, Q(x) becomes resolvable into a product of quadratic 
factors with rational coefficients. 

8. Let Q(x) = a0F(x) and n — v = m. Then F(x) may 
be written in the form 

(1) F(x) = xm - cixm~l + h ( - \)mcm. 

This function has rational coefficients, no zero intervals, and 
its discriminant D is not 0. 
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Form the function 
Fi(x) — (x — xi)(x — x2) • • • (x —• #w) 

(2) 

where 
%i) »̂2j * * * 9 *^m are independent variables. 

Select any two of these variables, say x± and x2, and form 
the function 
(3) g = p(xi + a&) + a*r2, 
where p represents a rational integer. 

Of the ml permutations of xi, x2, • - -,xm there are 2(ra — 2) ! 
which leave # interchanged. But if we apply all the ml per
mutations we obtain a system of p = m(ra — l)/2 conjugate 
functions 
(4) gi,Ç2, -->gP 

of which one, say gi, is # itself. Moreover since the difference 
of any two of these functions, namely 

p(xh + Xk) + XhXk — p(Xi + Xj) — XiXj, 

cannot vanish for all values of p unless Xh = xif Xk = xj or 
Xh = Xj, Xk = Xi, we can always so determine p (and we shall 
suppose this to have been done) that the functions gi, g2, • • •, g? 
are all different, provided, of course, that the discriminant of 
Fi(x) is not 0. The function g = gi is therefore a root of an 
equation of the pth degree 

(5) I I (* - 9i) = 00 , fu ƒ2, • ' -, fm) = 0 

with coefficients which are rational integral functions of the 
/ / s . The discriminant of this equation is not 0 and the equa
tion is irreducible in the domain of rationality of the ƒ/s. 

Every rational integral symmetric function of the variables 
Xi, x2, is a rational integral function of g, of degree p — 1 at 
most, with coefficients which are rational in fu f2, • • •, fm. 

For let 7 be such a function and let 71, 72, • • •, 7P, where 
7i = 7, be its conjugate functions arranged to correspond to 
the conjugate functions g±, g2, • • •, gp* By Lagrange's inter
polation formula, the function ƒ(z) whose values for z = gi, 
g2, • • -, gp are 71, 72, • • -, yp respectively is 

(to i( \ = V_£M_ _Ii__ = ^p"1 + ^ p ~ 2 + -•-+*,-! w m hz-gi Vigi) *W(») • • • <W ' 
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where the coefficients s0, si, 'm '> #P-i are rational integral func
tions of jfi, • • •, fm and the denominator is the discriminant of 
<l>(z) = 0. Therefore 

(7) y-Si3)- Disctf(») 

The function F\(x) can be reduced to the form 

Fi(x) = [x2 — (xi + x2)x + xix2]Q(x, xi, x2, fu • • •, fm), 

where Q is symmetric with respect to xi, x2, and therefore, 
by the theorem just demonstrated, to the form 

(8) Fx(x) = [x2 - <p(g)x + f(g)]Q(x, </, /i , • • • , / J , 

where <p(g), \p(g) and Q are rational with respect to the / / s and 
g and integral with respect to g. But from (8) the congruence 
Fi(x) — [x2 — <p(z)x + f(z)]Q[x, z,fu ' • ', fm] = 0 (mod 2 — jr) 
follows, and from this in turn, since <t>(zf / i , • • •, fm) is the ir
reducible function in the domain of rationality of the / / s of 
which z — g is a factor, the congruence 

*i(*) - [*2 - *(«)* + *(»)]«(*, », Ü, • • •, / J - 0 
[mod 0(2,/i, •••,ƒ*]. 

If in (9), we substitute for the / / s the corrresponding coeffi
cients of the given function F(x), we obtain 

F(x) — [x2 - <p(z)x + \p(z)]Q[x, z,ci, • • -, cm] = 0 

[mod^(s, ci, •••, Cm)], 

where the coefficients of <p(z) and \f/(z) are now rational func
tions of the c/s. But from (10) it follows that if we carry out 
the complete division of F(x) by x2 — cp(z)x + \p(z) we shall 
obtain a remainder which can be reduced to the form 
[r0(z) x + n(z)](l>(z), where r0(z), ri(z) are integral functions of 
z, and 0(2) stands for 4>{z, Ci, • • •, cm). Hence the result of this 
division may be written 

F(x) - [x2 - <p(z)x + $(z)]Qi(x, z,clf • • -, cm) 

= [r0(z)x+ ri(a)]0(2). 

Since by hypothesis Disc F(x) is different from 0, so also 
is Disc c/>(z). Therefore </>(z) has no multiple factors. We 
proceed to show that cj)(z) has /x = ra/2 zero intervals. 
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With the given function F(x), which has no zero intervals, 
associate the function F{x) = F(x) + TF'(X), where r is a 
constant so chosen that Disc [F(x) + tF'(x)] does not vanish 
as t varies from 0 to r, and therefore F{x), like F(x), has no 
zero intervals. Then X(F, F) = 0 (§ 6). 

Again let f(x) = II[a:2 — 2aix + (a*2 + bi2)], where the a%, 
by are any pairs of rational integers, all different; also_let 
f(x) == ƒ(#) + rf'(x) be a polynomial related to ƒ(#) as is F(x) 
to F(s). ThenX(/,/) = 0. 

Finally form the pair of functions 

Ft(x)= (l-t)f(x) + tF(x), 
(12) _ . _ (0 < * < 1), 

Ft(x)= (l-t)f(x) + tF(x), ~ -

Evidently Ft(x) and .F* (a), as thus defined, have positive 
values only. Therefore, if they have a common factor for 
any value of t in the interval (0,1), this factor must be of even 
degree, hence of the second degree at least. But if Ft(x) and 
Ft{x) are to have a common factor of the second degree, t 
must satisfy not only the condition R(Ft, Ft) = 0 but also the 
condition dR(Ft, Ft)lda = 0, where a denotes the term in 
either Ft(x) or FL(x) which does not involve xf and therefore 
the coefficients of F{x) and f(x) must satisfy the condition 
R[R(Ft, F), dR(Fh Ft)/da] = 0. This last condition is not an 
identity. Hence the numbers a^ bi on which the coefficients 

* It may be proved as follows that if the functions V(x) = v0 + vix 
+ • • • + vmxm and W(x) = w0 + wix + • • • H- wnx

n are to have a common 
factor of the second degree, to the condition R = R(V, W) — 0 there must 
be added the condition dR/dVo = 0. For the functions V(x) — V(u) and 
W(x) — W(u) have the common factor x — u, and therefore 

R(vo — V(u), vi, • • •, vm, wo — W(u), wi, • • •, wn) = 0 

identically. But if we take the derivative of this identity with respect to 
vij developthe result in powers of V(u) and W(u), and then replace u by 
x, we obtain an identity which is equivalent to the congruence 

(1) S* + ff s ° (modcL V^> W^' 
Hence if V(x) and W(x) have a common factor of the second degree 

both dR/dvo = 0 and dRjdvi — 0. But dR/dvi — 0 is not an independent 
condition; for since R — 0 is a sufficient as well as a necessary condition 
for the existence of a common factor of at least the first degree, if both 
R = 0 and dR/dvo = 0 it follows from (1) that dR/dvi = 0. 
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of f(x) depend may be so chosen that the condition is not 
satisfied. Suppose such a choice to have been made. We 
then have R(Ft, Ft) + 0, and therefore Disc Ft(x) + 0, for 
all values of t in the interval (0, 1). 

Let 0o(z) be the polynomial obtained from 0(s, fi) by re
placing each (— l)*fi by the corresponding coefficient of fix) 
expressed as a polynomial in x. The equation 0oOs) = 0 has /A 
real roots, namely, 2pcti+ (a*2 + bf) (i = 1, 2, • • •, /x). Hence 
X(d>, 0') = M/2. 

As t varies from 0 to 1, and therefore Ft(x) from f(x) to F(x), 
the function 
(13) 0,(z) = (1 - *)*<>(*) + ty(a) 

varies from 0o(2) to 0(s). Since Disc i^(#) never vanishes 
during this variation, the like is true of Disc 0*0*) • Therefore 
since X(0f, 0/) is ju/2 when t = 0 it is also JU/2 when t = 1. In 
other words, 0(s) has /x = m/2 zero intervals, as was to be 
proved. 

Therefore, if s denote an integer (determined as in § 4) such 
that no s-interval of the magnitude 1/s contains zero intervals 
of both 0(s) and 0'Os), and if D = Disc 0(2), we can, as in § 5, 
find ix intervals 

(i4) tti', ri"), (&', r«"), •••, ( r / , r /o 
of the magnitude 1/rs \ D | such that 

0(r/)0(r/o < 0 and 10(3) 1 < i/r for r/ ^ * ^ r/' 
(i = 1,2, •••,/*), 

where r is an integer which may be taken as great as we please. 
If £* i denote any number in (JY, f/') and we set 2 = f * in (11), 

we have 

F(x) - [x* - <p{U)x + Wi)]Q(x, U, <*,•••, O 
(15) 

= [ro(r<)« + n(f0]*(M, 
where the right member is a linear function of x with rational 
coefficients which are numerically less than r0(Çi)/r and ri(J\-)/r 
respectively and can therefore be made as small as we please 
by a suitable choice of r. Moreover, as in § 5, we can deter
mine an integer r such that f or r > r each of the products 
[x2 — <p(Çi)x + ^(ft)]Q(s, £», cu • -, cm) (i = 1, 2, • • -, M) is, 
like JF(#), without zero intervals. 
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I t has therefore been shown that we can find /x quadratic 
factors with rational coefficients and without zero intervals 

Oi = a* - 4>(ti)x + ^(fO, G2 = x* - f(h)x + <Kf2), • • -, 

GM = * 2 - * ( U * + *«•*) 
such that each of the remainders Rem (F/Gi) will be as small 
as we please. But from this it follows that the remainder 
Rem (FjGi, G2, • • •, GM) can be made as small as we please. 

For if no two of the functions G*have a common factor, and 
we shall show that this is the case, we can find two integral 
functions Pk, Qk, such that 

(16) Pk'G\G<2, ' - • Gk-iGk+i • • • Gp + QkGjc = Rk, 

where Pk is of the first degree at most, both Pk and Qk are 
integral with respect to the coefficients of the functions Gi, 
and Rk is the resultant R[Gk, G1G2 • • • Gk-iGk+i • • • G J . 

Let Pk = Pk/Rk, so that Pk has fractional coefficients, but 
such as involve only factors of the form R(Gk, Gi), R(Gk, G2), 
• • • in their denominators. I t will then follow from (16) that 

Pk' • GiG* • • • G*-iG w • • • GM s 1 (mod Gk) 

and, therefore, if G = GiG2 • • • GM, that 

ItPk'-GiGf-Gk^Gw-G^l (modG). 

But each term in the first member of this congruence is of 
the degree m — 1 at most, while G is of degree m. Hence 

2-/ PA' * G1G2 • • • Gk-iGk+i • • • G> = 1, 

from which it follows, by multiplying throughout by P/G, that 

P P P I ' PP 2 ' FP/ 
( 1 7 ) ^ = ~~^ I ~p r • * * H 7Y > 

Cr Cri Cr2 Cr^ 

and therefore that 

(18) 
+ G 1 G 2 - - - G M _ i R e m ( ^ y 
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Rem (F/Gk) is [rQ(Çk)x + nG*)]0G*). Hence Rem {FPk
fjGk) 

is of the form (akx + bk)<t>(Çk)IRk where ak and bk are integral 
functions of the f/s. Therefore since each Rk is different from 
0 and each | <£(&) | is less than 1/r, Rem (JF/G) is a polynomial 
in x of degree m — 1 at most with coefficients which by a suitable 
choice of r (> r) and the consequent choice of the numbers Çk 
can be made as small as we please. 

9. It remains to prove that the resultant of no two of the 
functions Gi, say the functions ft = x2 — $(fi)œ + ^(?i) and 
ft = x2 — <p(f2)# + iA(f2) can be 0, that is, less numerically 
than every assignable number ô. This resultant may be 
reduced to the form 

ie R(G19 ft) = fooi) - ^(r2))
4 + 2(^(Ti) - ^(r2))

2 

(i9) x [#(fi) - ^2(f0 + #(r2) - <p\m 
+ [4(^(ro - *(«) - (**(« - ^2(r2)]

2. 
Both 4^(fi) — <p2(ft) and 4^(f2) — <P2(r2) are positive. Hence 
i2(ft, ft) cannot be numerically less than every assignable 
number unless the same is true of both <p(Çi) — ç{Ç%) and 
^(fi) — ^(r2)« But, as we proceed to show, at least one of 
these differences is numerically greater than a definite positive 
number. 

In defining the function g = p(xi + #2) + XiOfy we subjected 
the integer p to the single condition implied in the requirement 
that the discriminant of the equation </>(z, fi) = 0 of which g 
is a root be not 0. We shall now define p more closely, as 
follows. Let 
(20) p = 2q + t where t ^ q ^ 1, 

determining the integer q also so that the equation cj>i(zffi) = 0 
of which the function g% = q(xi + #2) + X1X2 is a root shall not 
have a zero discriminant. This function g\ is a rational 
integral function of g; let g\ = d(g, fi). The equations 
4>(z>fi) = 0 and 4>i[d(z), ƒ J = 0, of which the first is irreducible, 
have the root g in common. Therefore <£i[0Os), ƒ J is exactly 
divisible by c/>(z,fi). Hence, if in these functions we replace 
the / / s by the corresponding coefficients d of F(x) and call 
the resulting polynomials <l>(z) and (/>i[6(z)], we have 

(21) 4n[0(z)] = *(») Q(«), 

where Q(s) is integral and all the coefficients are rational in the 
coefficients of F(x). If, therefore, any interval (z', z") con-
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tains a zero interval of <j>{z), the interval to which the values 
which 6(z) takes in (z', z") belong will contain a zero interval 
oifaiz). 

Let 1/si represent the magnitude of an interval which cannot 
contain zero intervals of both <fii(z) and <l>i(z), the integer $i 
being determined as in § 5; let u be an integer greater than 
all the values of | [6(z + a) — 6(z)]/<r |, | a \ ^ 1, in the 
interval (— ci, ci) in which all the zero intervals of <j)i(z) lie; 
finally, to the conditions already stated for determining s for 
<t>(z) add s ^ siu. We shall then have for all values of z in 
( - ci, ci) 

(22) \0(z+*)-0{z)\<\<r\± ( | < r | £ l ) . 
*>i 

Therefore to values of z belonging to intervals of magnitude 
1/s and l/rs\ D \ respectively there correspond values of 
6(z) belonging to intervals of magnitude 1/si and l/r$i\ D |. 
The numbers fi and f2 belong to zero intervals (f/, f i") and 
(W, f2") of <f>(z) of magnitude l/rs\D\. Hence 0(ft) and 
0(f2) belong to intervals of magnitude l/rsi\ D \ which it 
was shown above are zero intervals of $1(2). But from this 
and the fact that no interval of the magnitude ljsi can contain 
zero intervals of both #1(2) and <l>i(z) it follows (see § 5) that 
I 0(?i) - 0(f2) I > lAi- Therefore, if for brevity we set 
0(fi) = (h, 0(h) = 02, fi = h, h = K we have 

(23) I d — 021 > — and | 6 i - 6 2 | > - . 
s± s 

Since 
p(xi + X2) + X&2 = #, g(«i + x2) + x±X2 = 6(g), 

xi + x2 = <?(#), «i z2 = ^(jr) 

we have, on replacing g by f », 

p*(r<) + *«•<) = r*> w(r<) + *(r<) = *(r<) 
and therefore 

It therefore only remains to prove that one or other of the 
quantities 

(25) di = ai — (h — (h — 62), d!̂  = p(ai — (h) — #(&i — 62) 
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must be numerically greater than some definite positive num
ber. We shall show that 1/si is such a number. 

For if | di | < 1/si then bi — 62 = 0i — (h =*= a/$i where 
0 ^ ô < 1, and therefore^ = (p — g)(ai — 02) =t= 8?/$i, which 
by (20) and (23) is numerically greater than l/$i. 

And if I 4 I < 1/si, then g(61 — b2) = p(ai — 02) =±= S'/si, 
where 0 ^ ô' < 1 and therefore d\ = — (g + 2)(ai — «2)/? 
± S'/^i, which again is numerically greater than 1/si. 

10. Kronecker's theorem has now been demonstrated. For 
referring to equations (1) of § 7 and (18) of § 8 it will be seen 
that if we set 

FMx) = S(x)/r' + a0(x - &)(* - fc) • • • (3 - £„) -Rem JF/G 

we shall have 

ƒ(*) - *W(«) = Oo(a - &)(* - & ) • • • ( * - Q 

x (x2 - ^(ro*+MO) • • • (*2 - * ( r j *+ IKM). 
We have given methods by which v9 the numbers £*• and £*, 
the functions #>(£), *Kf), and the remainder function Fr>r(%) 
may be determined from the coefficients of the given poly
nomial f(x) = S ^ a V*~* by a finite number of rational opera
tions. The function Fr^{x) is of degree n — 1 at most. Its 
coefficients are all numerically less than k/r' or k/r, where k is a 
determinable positive number, and can therefore be made as 
small as we please by assigning sufficiently great values to 
r' and r and then making the corresponding determinations of 
the numbers & and f »-. And when the coefficients of f(x) are 
subjected to the variation which consists in subtracting from 
them the corresponding coefficients of Fr,r(x), the resulting 
polynomial is a product of v linear and (n — v)/2 quadratic 
factors, all with rational coefficients. 

In conclusion it may be remarked that if recognition be 
accorded the irrational numbers, and we represent the limits 
which the numbers £»• and f »• approach as r' and r approach 
infinity by £/ and J7 respectively, it will follow from (1), 
since lim Fr>r(x) = 0, that 

fix) = aQ(x - &') • • • (x - {/)(*» - *(&')* + ^«V)) 
(2) • • • ( * , - * ( M * + iKr/)) 
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so that from the result of Kronecker's discussion there follows, 
for numerical equations, a proof of the fundamental theorem of 
algebra as ordinarily stated. 

PRINCETON UNIVERSITY, 
December, 1913. 

TWO CONVERGENCY PROOFS. 

BY PROFESSOR ARNOLD EMCH. 

(Read before the American Mathematical Society, December 30, 1913.) 

1. Introduction. 
IN the study of automorphic functions defined within a 

fundamental domain G formed by two non-intersecting circles 
in the "elliptic" case and by two tangent circles in the "trigo
nometric" case, it is necessary to prove the convergence of 
certain fundamental series, as has been shown by Schottky 
recently.* In the first case the substitutions of the cyclic 
group associated with it may be written in the form 

a ) *=!;-*• ~a 
xK— b L x — V 

where X may assume all integral real values between — oo and 
+ °° and where a and b are invariant in all substitutions of 
the group. When x describes the circle iL_i of the funda
mental region G, xi describes the circle K\ forming the other 
boundary of G. xx describes a circle KK and all circles KK of 
the pencil with a and b as limiting points divide the whole 
#-plane into a set of regions corresponding to the substitutions 
of the group.f Schottky bases his proof of the convergence 
of the series SrA of the radii of the circles i£ A on the invariance 
of the expression 

( r / + r A + 1
2 - Q 2 

4fxVx' ~ 

~~ ) = F(x) 
yx -f- ö / 

geniigt," Journal für reine und angewandte Mathematik, vol. 143, pp. 1-24 
(May, 1913). 

t See also Klein-Fricke, Vorlesungen über die Theorie der elliptischen 
Modulfunctionen, vol. 1, pp. 163-207. 


