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From (1), (6) and (8) it follows that 

1 rW2 sin4 mu . , , 1 fw/2sin4 ma 7 

m2 J0 s i r ^ ' m2 J0 sm -u 

*<n'<(f - i ) , 
and consequently 

Urn J'm = lim E 2 X J T 1 = f riTZ = loS 2-

Using this result in connection with (4), it is seen that 

m=oo J m, TT 

so that, using the numerical values of J, and J '„ we may 
finally state the result 

2 . 7 5 8 - - ^ > ^ > ! f > . • • > 2 . 6 4 8 - . 
e/4 </5 «/6 

PRINCETON UNIVERSITY, 
December 20, 1913. 

NOTE ON THE ROOTS OF ALGEBRAIC EQUATIONS, 
BY PROFESSOR R. D. CARMICHAEL AND DR. T. E. MASON. 

(Read before the American Mathematical Society at Chicago, April 
10, 1914.) 

1. LANDAU* has established certain interesting inequalities 
concerning the least root of a class of algebraic equations, 
having been led to these results by considerations connected 
with his remarkable extension and generalization of Picard's 
famous theorem to the effect that an entire function which 
fails to assume two values is a constant. These special in-

* Annales de l'École Normale Supérieure (3), vol. 24 (1907), pp. 179-201; 
Vierteljahrsschrift der Naturf. Gesellschaft in Zurich, vol. 51 (1906), pp. 
252-318. 
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equalities have been generalized and made more precise by 
Allardice.* Finally, still more comprehensive results have 
been obtained by Fejér f by a method which leaves nothing 
to be desired in the way of simplicity and elegance. Fejér's 
result, which contains those of the other authors mentioned, 
may be stated as follows: 

Let 

(1) a0 + axz
vi + ch*v* + h a**"* = 0 

be an equation of k + 1 terms in which 

do + 0, ax 4= 0, vi < *>2 < • • • < Vk. 

Let f be a root of this equation of least absolute value. Then we 
have the inequalities 

( 2 ) I r ' - L (̂ 2 — l̂)(^3 — ^) • • - (̂ fc — x̂) J 

{6) | r | H 1-2 ••• ( f c - 1) J 

i / i l a J i / i 

\ax\ 
i /n 

In case *>i = 1, we have 

(4) l f l ^ * | ? l J 

and this value is actually attained by the roots of the equation 

For the case v\ = 1 formula (2) was obtained by Allardice. 
For the case when k = 2 and v\ = 1 formula (4) was established 
by Landau. Furthermore, for k = 3 and v\ = 1 Landau 
proved that | £ | is not greater than 5f ao/ai, a result less precise 
than that of Fejér above. 

The principal purpose of this note is to establish other results 
concerning the least roots of algebraic equations, especially of 
those of certain special forms. It will be seen that these 
results are in some cases more far-reaching than those of 
Fejér. An additional theorem of a related nature is also given 
in the final section. 

* BULLETIN, vol. 13 (1907), pp. 443-447. 
t Comptes rendus, vol. 145 (1907), pp. 459-461. 
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It is convenient, first of all, to simplify equation (1) in the 
following way: Divide each member by do and replace z by x, 
where 

Z. 
\«o/ 

Then the equation takes the form 

(5) 1 + xvi + a2x
v* + azxv* + h akx

Vk = 0. 

We shall confine our attention principally to the latter equa
tion. 

2. We shall consider first the case in which v\ = 1 and Vi+i = 
Pi + 1 when i > 1, writing the equation in the form 

(6) 1 + X + C8+1X
8+1 + CS+2X8+2 H h CmXm = 0 (* ̂  1). 

Let xi, #2, • • •, xm denote the roots of this equation. From the 
equation whose roots are the reciprocals of those of (6) we 
see at once that 

2 - = - 1, 2 — = 0, - .• , 2 = 0, 
Xi X±X2 X\X2 • • • Xs 

where the summation in each case is for all terms of the type 
written. From these equations and the customary formulas 
for the sum of the roots of an equation in terms of the ele
mentary symmetric functions of these roots* it follows readily 
that 

Therefore 
Xi8 V 

+ -" + nr-T^l . 

Now if we suppose that x\ is a root of (6) of least absolute 
value, we have 

I Xi \8 — 
whence 

I X\ I ^ *vm. 

* See Bôcher's Higher Algebra, p. 244. 
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This result may be stated in the form of the following 
theorem: 

I. The equation 

1 + X + CS+1X
8+1 + C8+2X8+2 + \-CmXm=Os ( * £ 1 ) , 

has a root ivhich is not greater in absolute value than Vm, what
ever values c8+i, cs+2, • • •, cm may have. 

COROLLARY. The equation 

(7) l + o:+ cs+i*8+1 + cs+2x
s+2H h c2sx28 = 0 (s ^ 1), 

has a root which is not greater than 2 in absolute value. 
The result of this corollary for the special case when 

cs+2 = c,+3 = • • • = c2s = 0 is given by Landau (loc. cit.). 
Here the equation reduces to a trinomial. 

If we apply to equation (7) the Allardice-Fejér formula (2) 
for vi = 1 we conclude that this equation has a root not greater 
in absolute value than 2s/s. For s approaching infinity this 
value 2s/s itself approaches infinity at a rapid rate. Hence, 
the circle in which, according to the Allardice-Fejér result, 
equation (7) certainly has a root increases in size with increas
ing s. But from the theorem of our corollary it is seen that 
(7) always has a root in the circle of radius 2 about the point 
zero. Thus for the special case of equation (7) (and likewise 
of (6), as one may readily show) our results reach further than 
those of Allardice and Fejér. 

We shall now show inversely that there is in general but one 
root of equation (6) which is bounded by the circle about zero 

of radius ^m when c8+1, •••, cm are arbitrary. More pre
cisely, we shall prove the following theorem: 

II . Let s and m be any two positive integers having a prime 
number p between them: s < p < m. Let M be any positive 
constant. Then there exist equations of the form 

1 + x + cs+ix8+1 + •. • + cmxm = 0 

having every root but one greater than M in absolute value. 
To prove this theorem it is sufficient to construct equations 

having the specified property. Let kp( k ^ 1) be the greatest 
multiple of p which is less than m. We shall further specialize 
the equation to be constructed so that it shall have the form 

(8) 1 + x + cpx*> + Cp+iz**1 + h ckv+lx
k*+1 = 0. 
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Now let co be any primitive pih root of unity; then the set 
of pih roots of unity is 1, co, co2, • • •, co3*"-1. Let x\9 x2f • • -, 
XtcP+i denote the kp + 1 roots of equation (8). We shall 
build up equation (8) by properly choosing the values of its 
roots. Thus, we put 

Xkp+l = — 1, 

3Mfc+i;= OT^T, O = 0, 1, • • -, p - 1; v = 1, 2, • • -, k), 

where r is any number whatever which is different from zero. 
With these values of Xi, x2, • • •, XkP+i we have 

s 4 = ( -1 ) ' («=1,2, • • • , p - l ) , 

as one sees readily by means of the well-known relations 

l ' + co' + co2H h «<*-»« = 0 (* = 1,2, • • • , £ - 1 ) . 

From the usual formulas (Bôcher, loc. cit.) for the sum of the 
roots of an equation in terms of the elementary symmetric 
functions of these roots it is now easy to see that 

1 1 1 1 
2 - = - l , 2 — = 0, 2 =(),•••, 2 = 0. 

Xi X\X2 XiX2Xz X\X2 • • • Xp-i 

Hence, the equation of which the roots are x±9 x2, • • •, Xkp+i 
has the form (8). If | r | > M, then all but one of the roots 
of the equation so formed are greater than M in absolute 
value. Hence we conclude to the theorem as stated above. 

By means of II and the corollary to I we shall now prove 
the following theorem: 

III. Every equation of the form 

1 + x + Cs+xx8*1 + c8+2x
8+2 + h c2,x

28 = 0 0 ^ 1), 

has at least one root not greater than 2 in absolute value, while 
special equations of this form may have all roots but one greater 
in absolute value than any preassigned M. 

In order to complete the demonstration of this result it is 
sufficient to observe that obviously only one root is bounded 
when s = 1 and that a prime number p lies between s and 2s 

when s ^ 2 . For 5 = 2 we have p = 3 and for s = 3 we 
have p = 5 or 7. For s > 3 we may prove the existence of p 
by means of Tschebyschef 's theorem* : If an integer s is greater 

* Bachmann, Niedere Zahlentheorie I, p. 66. 



1914.] ON THE ROOTS OF ALGEBRAIC EQUATIONS. 19 

than 3 then there is at least one prime number between s and 
2s- 2. 

3. Next, let us consider the equation 

(9) 1 + Xr + Csr+lX8r+1 + h CmXm = 0 (S ^ 1). 

Let xi, X2, - • •, xm be the roots of this equation and denote by 
Ak and Sk respectively, the sums 

Ah = 2 , St = S —r. 
XiX2 ' ' • Xh XiK 

Then we have* 

Sm — AiSm-i + A2Sm-2 — • • • 
( 1 0 ) + ( - l)m-1Am.1S1 + ( - YTmAm = 0. 

Now from equation (9) we see readily that 

Ax = A2 = • • = Ar-i = 0, ^4r = (— l ) r , Ar+i = • • • = Asr = 0. 

Hence it follows from (10) that 

#r = — r; 
and then that 

£2r = r, if * ^ 2. 

Continuing thus we have finally 

Ssr = ( - l ) ' r ; 
that is, 

— + - 7 ; + ••• +—Tr= ( - !)^-
# i s r £ 2

s r # w
s r v 

If 0:1 is a root of (9) of least absolute value, then from the last 
equation it follows readily that 

^ r or | î i | ^ \ -
| in I*' — l l — r 

Thus we have the following generalization of theorem I : 
IV. Every equation of the form (9) has at least one root which 

is less in absolute value than -\m/r. 

* See Bôcher's Higher Algebra, p. 244. 
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We may also generalize theorem II and so obtain the fol
lowing result: 

V. Let r, s and m he any three positive integers such that r is 
prime while a prime number p lies between sr and m •— r + 1 ; 
sr<p<m — r-\-l. Let M be any positive constant. Then 
there exist equations of the form (9) which have all but r of their 
roots greater than M in absolute value. 

The detailed proof of this theorem will not be given. I t is 
sufficient to construct an equation of the form 

1 + xr + cpx* + c^x^1 -\ h ckp+rx
kv+r = 0 (kp + r^m), 

by means of its roots xi, x2, • • -, Xkp+r defined as follows: 

x^k+v = cifV, Ox = 0, 1, 2, • • -, p - 1; v = 1, 2, • • -, k); 

xkp+t = t\r% (1 = 1,2, •••, r), 

co being a primitive pth root of unity, e a primitive rth root 
of unity and rj any rth root of — 1. 

4. Related to the foregoing theorems is the following rather 
obvious one: 

VI. In the equation 

(11) 1 + dix + • • • + akx
k + • • • + amXm = 0, 

of degree m, let ak be any given non-zero coefficient and let all the 
other coefficients be chosen in any manner whatever. The equa
tion has at least one root which is not greater in absolute value 
than 

*/ ml ~ */ 1 
(12) ^ Vjfe!(m-*)I' \ T ^ -
The equation 

1 1 + xyj ^-y J = 1 + aix + • • • + akx
k 

H h amx™ = 0 

has all its roots equal in absolute value to the quantity (12). 
Let xi, X2, - • •, xm denote the roots of the given equation and 

let Xi be a root of least absolute value. We have readily 

(13) 2 = ( - l)kak; 
V ' XXX2 ' • • Xh 
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whence 
1 ml , . 

| Xi \k k\(m — k)\ 

since the number of terms in the first member of (13) is ob
viously equal to the number of combinations of m things taken 
k at a time. Hence, 

Xl k\(m — k)\ * I ah 

This proves the first part of the theorem. The second part is 
obviously true. 

5. We shall now prove a theorem of a nature somewhat 
different from that of those in the preceding sections; namely, 
the following: 

VII. All the roots of the equation 

(14) xn + a!Xn~l + 02Xn~2 + • • • + an = 0 

are in absolute value less than or equal to 

Vl + I a, |2 -J- | a2 |
2 + • • • + | an |2. 

Let f be a root of least absolute value of the equation 

1 + <hz + a^ + • • • + anz
n = 0. 

Write 

(15) = 1 + ci* + «fez2 + • • •. 

Now, the circle of convergence of the power series in the second 
member of (15) passes through the point f. Its radius is 
therefore equal to | f |. Therefore, by a well-known property 
of power series, we have 

1 . m — 

T-r-, = lim sup Vcw. 
| Ç I m=oo 

Hence, if x is a root of (14) of greatest absolute value, it is 
clear that 
(16) | x | = lim sup A/CW. 

m=oo 

Now, the value of cm is readily expressed in the form of a 
determinant, as follows: If we multiply equation (15) through 
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by the denominator of its first member and in the result 
equate coefficients of like powers of z, we have 

Hence 

(17) 

Cl 

CilCi + C2 

(hCi + aic2 + C3 

atfi + (hc2 + aiCz + c4 

Om = = 

1 0 0 0 •• 

<h 1 0 0 • • 

a>2 a i 1 0 • « 

a3 a* ai 1 • « 

= — ai, 

= — 02, 

= — «3, 

= — «4, 

• 0 ai 

• 0 02 

• 0 a3 

• 0 04 

• 

Now, if Am is a determinant of order m, 

on • • • dim 
Am = 

then 

where 

Oml 

I A», I <[ l / V i ^ • • • <rm 

This fundamental theorem is due to Hadamard.* 
From this theorem and equation (17) we see readily that 

(18) \cm\< { l + | o i | 2 + | o 2 | 2 + . . . + | o n | 2 r / 2 , 

since each row in the determinant in (17) has the property 
that the sum of the squares of the absolute values of its 
elements is not greater than 1 + | ai |2 + • • • + | an |

2. 
From (18) and the result associated with (16) the theorem now 
follows immediately. 

INDIANA UNIVERSITY, 
February) 1914. 

* Bull, des Sciences Math. (Darboux), vol. 17 (1893), pp. 240-246. 


