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and the corresponding convergent by an\$n, Professor Lehmer 
has obtained certain interesting inequalities connecting the 
P's and Q's, which show that there can be only a finite number 
of P's which have the same value. In a former paper it was 
shown that the Q's satisfy the indeterminate equation 

( - l)^Qn = o£ - Rri, 

and by a general theorem due to Axel Thue (Christiania, 
Videnskabs-Selskabet Skrifter, 1908, No. 3), there can be 
only a finite number of Q's having the same value in the 
expansion. This important result has not yet been derived 
from the discussion of the continued fraction itself. 

4. The first paper by Professor Dickson gave a survey of 
the main results in the theory of invariants arising in the theory 
of numbers. Special attention was given to the construction 
of formal modular invariants from the geometrical stand
point developed in the October number of the Transactions. 

5. The second paper by Professor Dickson related to the 
theory of modular cubic and quartic curves for the interesting 
case in which the modulus is 2. Such a quartic curve has at 
most seven bitàngents (and aside from special cases exactly 
seven) whose intersections are either singular points or points 
with indeterminate polars. In general, all such points are 
intersections of bitangents. The equivalence of two quartic 
curves can be decided from a knowledge of their real points, 
their singular points, and their points with indeterminate 
polars. THOMAS BUCK, 

Secretary of the Section. 

MODULAR INVARIANT PROCESSES. 
BY PROFESSOR O. E. GLENN. 

(Read before the American Mathematical Society, September 8, 1914.) 

Introduction. 
LET ƒ = a0Xi + • • • be an ordinary algebraical quantic in 

m variables. Suppose that it is subjected to linear trans-
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formations whose coefficients are parameters representing 
positive residues of a prime number p. The result, ƒ' = 
<hxT + • • •, will be a quantic whose coefBcients will be 
linear forms in the variables aç>, ai, • • • with integral coeffi
cients. Any function <p of the coefficients and variables 

<p = <p(a0, ah • • • ; x u x%, • • •) 

which possesses the property 

v(a0, a[, • • • ; xu x2, • • •) = PVOO, (h, • • • ; «i, afe, • • •) (mod p) 

identically in the a's and x's, p being the modulus of the 
transformation, is called a formal modular covariant of ƒ,* 
or a formal covariant modulo p of ƒ. 

It is the purpose of this paper to develop some invariant 
processes which produce concomitants of this type; that is, 
processes which are characteristic of the invariant theory of 
modular transformations. 

§ 1. Modular Polars. 

It is easy to prove that with reference to m-ary transforma
tions with integral coefficients modulo p the following set of 
functions is cogredient to the set of variables xi, x2, • • -, xm: 

x\\ xf, • • -, xp„l (t a positive integer). 

In fact if the transformations are 

(1) Xi =; \&[ + 1HX2 + • • • + Vix'm (i = 1, • • -, m), 

we have by the multinomial theorem 

xf EES )tfx? + Mf xf+...+ ofa£ (mod p). 

Hence by Fermâtes theorem 

(2) xf = \ixf + iiixf + • • • + cfixT (mod p), 

which proves the statement. 
In any formal-modular invariant function <p(xi) we may 

replace the variables Xi by Xi + Ixf without disturbing the 
property of invariance. Hence follows the theorem. 

*Hurwitz, Archiv der Math, und Phys., ser. 3, vol. 5 (1903), p. 17. 
Dickson, Madison Colloquium Lectures, Lecture III, and Lecture IV, p. 68. 
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THEOREM 1 : The modular polar 

(3) *;>-*£+*£+••• + * £ (modp) 

is an invariant operator. 
Any other set of functions fi, ƒ2, • • •, fm which possesses the 

property of cogrediency with the variables will furnish a 
modular polar operator. 

For illustration consider the modular polars of the quadratic 
form in m variables with arbitrary coefficients 

m 

Cm = = x ,* aijXiXj \1 ^ J)» 

Operating with E%\ we obtain the polars 
m m 

m 

%J^m, Qm = = X , aijX^Xj» 
i, J=l 

These are both formal-modular covariants of qm under (1). 
A direct extension shows that if n 4s 0 (mod p), anm-ary form 
fn has n covariant polars E{^Jn (r = 1, 2, • • -, n) of degree 1 
in the coefficients. If p > n} none of these polar covariants 
will vanish modulo p. Thus if n = 3, p > 3, m = 2, we have 

and 

JEtfy = aoa*1+2 + 2aia:f+1a:2 + a r f «Ï + axx\xt 

+ 2(hx1x
p2+l + azxf+\ 

\Epf = aox2^1 + ai^Xi + 2a1x?+1x? + 2avx?x$+i 

+ (hxixl** + azxl^+l
9 

iEit)Bf = <w$? + Za&Yxf + 3<wf a*>' + a9z}*\ 
The analogy which this polar theory presents when com

pared with the algebraic polar theory is closer than it might 
appear to be at first sight. For a little consideration will 
show that it is immaterial whether we operate directly with 
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Ec^, as in the illustrations above, or whether we operate 
with E(y) = ( y z~ J the requisite number of times in succes
sion and then set yi = xf (i = 1, • • •, m). The two results 
will be identical modulo p. The essential difference between 
the present theory and the algebraic theory is that an algebraic 
polar becomes the original polarized form when (y) = (x), 
whereas in the present theory (y) is expressible in terms of (x) 
in such a way as to give covariants other than the form itself. 

§ 2. Modular Aronhold Operators. 

Let us suppose that ƒ is a form having fx + 1 coefficients. 
As previously stated, the coefficients a/ (i = 0, • • -, /x) of the 
transformed of ƒ under (1) are linear forms with integral 
coefficients in the variables a0, ai, • • •, that is 

(5) a\ = £iOo + r\%d\ + • • • + r ^ (mod p) (i = 0, 1, • • -, fx), 

where £t-, rji, • • * take all values modulo p which are induced 
by the linear group (1). Thus (5) form a group induced by 
(1). Under group (5) the following are cogredient to a0, 
ai, - • •, a^ : 

af, af, • • -, ap* (t any positive integer). 

Hence (§1) the following operator, applied to any concomitant 
of/, gives a formal concomitant modulo p: 

w=(aP'l) = < k + * £ + - + <<k <mod *>• 
Consider a binary quadratic form 

ƒ = a0xf + 2ai#i#2 + a^xl. 

Let p = 3. The algebraic concomitants are ƒ and its dis
criminant D, and we have 

ffif == aoirf + 2a\x\X2 + aü#2 
(mod 3). 

d^D 3= aü«2 + «Î + a0a2 

The latter are formal concomitants, modulo 3, of ƒ. The 
modular Aronhold operator 3^° applied successively to a 
concomitant of/ 

<p(a0, ai, • • -, am, #1, • • •) 



1915.] MODULAR INVARIANT PROCESSES. 171 

gives a series of formal modular concomitants intermediate, 
in the sense of Boole, to <p and 

(6) <pt = <p(a%\ a{\ • • -, at9 xu • • •)• 

If b0, bu • • •, b^ are the coefBcients of a second m-ary 
quantic # of the same order as ƒ, and <p an invariant function 
off and 0, then 

K). K). 
applied to <p, give simultaneous formal modular concomitants. 

§ 3. Modular Transvectants. 
We define the modular transvectant o vo binary forms 

f(x) = aoxT + maix™~lX2 + • • -, £>(#) = &0#ï + nbiXÏ~lX2 H 

m, n 4s 0 (mod p), 

as follows: Operate upon f(x)<p(y) with 

d2 d2 

0 = dxidy2 dxzdyi 

r times, divide by mini /(m — r) ! (n — r) ! and in the result 
set 2/i = xpi (i = 1, 2). The result, which we abbreviate as 
(ƒ, <p)pt, is the rth modular transvectant of ƒ and <p. Thus, if 
m = n = 2, 

(ƒ> <P)'P = («o&i ~ «i&o)4+1 + (ao&2 — ai6i)o:i^ + (aj)i — 02&o)#ï#2 

+ (0̂ 162 — fl2&i)#2+1 (mod p ) , 

(ƒ, (ƒ, rô)i = («002 - a\)[b,x^ + &x(*fo + a*r?) + fcrf"] 

s J D . E j V f r ) (modp). 
I proceed to the problem of finding a canonical formula for 

(f> <p)ph from which several properties can be derived. A well-
known form of Gordan's series* gives the expansion of 

( w - f ) l ( n - r ) ! 
mini JK / Y ^ y 

as a power series in the argument (xy). In the Aronhold 

* Grace and Young, Algebra of Invariants, p. 55. 
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symbolical notation (ƒ(&) = a?, <p(y) = &£) this is 

(m — r \ /w — r\ 

The algebraical transvectant (ƒ, <p)r is obtained from this by 
the change y = x, the right hand side reducing to the first 
term since (xx) = 0. The modular transvectant is obtained 
from this same expansion by the substitution y = xp\ I t 
does not reduce to a single term on the right but becomes a 
polynomial in the universal formal modular covariant 

THEOREM 2: 

v (v)(v) 
<>• '«• - S *' / , + . - » - < + i x f ~ t t **V„ 

iV,= ( - l ) * ( m - i - r ) !/[m + n - 2 ( i + r)] . ! 

In this expansion i?2
0 and Z, are modular and (ƒ, ^)8 is 

algebraic. 
We may note that a modular transvectant of a form with 

itself, of odd index (ƒ, /)£?+1, does not vanish identically. 
But it is reducible in all cases and contains the factor Lt< 
The transvectants (ƒ, <p)r

pt, (<p, f)r
pt are entirely distinct, 

although they may be called conjugates owing to their sym
metrical relationship. 

A modular transvectant is a linear combination of modular 
polars of algebraic transvectants with the universal covariant 
Lt added to the system. It is known* that Lt is rationally 
expressible in terms of L% and Q = Z2/Z1. Moreover I have 
proved in another paper that Q is a covariant of i i . Hence 
one method of procedure in constructing systems of concomi
tants of a quantic ƒ (modulo p) is to construct the algebraical 
fundamental system of ƒ and polarize it by the operators 
JE(

2°, S(
n°. Then join L\ to the polar system and form a second 

system consisting of the simultaneous fundamental system 
of ƒ and i i . The forms of the second system which are not 

* Dickson, Transactions, vol. 12 (1911), p. 75. 
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found in the polar system are to be added to the polar system. 
That some forms of the second system will be polars is evident 
from the fact that, if F is any form whose order is not divisible 
byp; 

f)F c)F 

(h, ^) = ^ + ^ = ®)F (mod 2>). 

§ 4. Concomitants of a Linear Form. 
Let ƒ = aoXi + ai^2; p = 3. The algebraical system of ƒ is 

ƒ itself. Polarizing this, we have 

C = Eff = a,x\ + a& C' = Eff = a0x{ + alX\y 

D = S(/y = alxx + a\x2. 

The modular system of Zi is 

XyX2 ~t" %l* 

to + Xt 
The simultaneous system of ƒ and L\ is 

(Zi, ƒ ' ) ' (r = 1, • • -, 4); (&ƒ•)• (* = 1, • • -, 6). 
Of these, some belong to the polar system and some are 
reducible; as (Q, f f s fC (mod 3), etc. But 

A = (£„ƒ*)* = afo - ¥ b 
5 = (Q, Z6)6 - aj + a\a\ + a\a\ + a\9 

E = (Q, f)B = (h(al - oî)«î - a\x\x2 + a\xxx\ 

+ a0(al - a\)x\. 
The polars 

E2
l)D=f, E2

l)E=DLv Ô^A^O, h^B = A2 (mod 3) 

are reducible. The polar C" is also reducible. In fact, 

C<=CQ-fL\ (mod 3), 

The complete set of irreducible concomitants, modulo 3, of 
the linear form ƒ is 

A,B,C,D,E,f,Li,Q. 
UNIVERSITY OF PENNSYLVANIA, 

PHILADELPHIA, PA. 


