# INVARIANTS, SEMINVARIANTS, AND COVARIANTS OF THE TERNARY AND QUATERNARY QUADRATIC FORM MODULO 2. 

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, September 8, 1914.)

1. A simple and complete theory of seminvariants of a binary form modulo $p$ was given in the writer's second lecture at the Madison Colloquium.* A fundamental system of covariants of a ternary quadratic form $F$ modulo 2 was obtained in the fourth lecture. In place of the method employed there (pages 77-79) to obtain the leading coefficient of a covariant of $F$, we shall now present a simpler method which makes it practicable to treat also the corresponding question for quaternary quadratic forms. The new method is, moreover, in closer accord with the underlying principle of those lectures, viz., to place the burden of the determination of the modular invariants upon the separation of the ground forms into classes of forms equivalent under linear transformation. By making the utmost use of this principle, we shall obtain a simpler solution of the problem for the ternary case and then treat the new quaternary case.

Let the coefficients of the quadratic form

$$
q_{n}=\Sigma b_{i} x_{i}^{2}+\Sigma c_{i j} x_{i} x_{j} \quad(i, j=1, \cdots, n ; j>i)
$$

be undetermined integers taken modulo 2 . In a covariant of order $\omega$ of $q_{n}$, the coefficient of $x_{n}^{\omega}$ is called the leader and also a seminvariant. It is invariant with respect to the group $G$ generated by the linear transformations on $x_{1}, \cdots, x_{n-1}$ and those replacing $x_{n}$ by $x_{n}+l$, where $l$ is a linear function of $x_{1}, \cdots, x_{n-1}$, the coefficients in each case being integers taken modulo 2.
2. For $n=2, G$ is composed of the transformations

$$
x_{1}=x_{1}^{\prime}, \quad x_{2}=x_{2}^{\prime}+t x_{1}^{\prime} .
$$

Taking $t=b_{1}$ and applying the transformation to

[^0]$$
q_{2}=b_{1} x_{1}^{2}+b_{2} x_{2}^{2}+c_{12} x_{1} x_{2}
$$
we get
$$
q_{2}^{\prime}=\sigma x_{1}^{\prime 2}+b_{2} x_{2}^{\prime 2}+c_{12} x_{1}^{\prime} x_{2}^{\prime},
$$
where
$$
\sigma=b_{1}\left(b_{2}+c_{12}+1\right)
$$

Evidently $\sigma, b_{2}$, and $c_{12}$ are seminvariants. Since therefore they completely characterize the classes of forms $q_{2}$ under $G$, they form a fundamental system of seminvariants of $q_{2}$. Since $c_{12}$ and

$$
J_{2}=\left(b_{1}+c_{12}+1\right)\left(b_{2}+c_{12}+1\right)
$$

remain unaltered when $b_{1}$ and $b_{2}$ are interchanged, they are invariants and, in fact, form a fundamental system of invariants of $q_{2}$.
3. For $n=3$, we have the seminvariants $b_{3}$ and

$$
P=\left(c_{13}+1\right)\left(c_{23}+1\right)
$$

and the invariants (Lectures, pages 69, 74)

$$
\begin{gathered}
A=P\left(c_{12}+1\right), \quad \Delta=c_{12} c_{13} c_{23}+b_{1} c_{23}+b_{2} c_{13}+b_{3} c_{12} \\
J_{3}=\beta_{1} \beta_{2} \beta_{3}
\end{gathered}
$$

of which $\Delta$ is the discriminant of $q_{3}$, and

$$
\begin{gathered}
\beta_{1}=b_{1}+\left(c_{12}+1\right)\left(c_{13}+1\right), \quad \beta_{2}=b_{2}+\left(c_{12}+1\right)\left(c_{23}+1\right) \\
\beta_{3}=b_{3}+P .
\end{gathered}
$$

Theorem. A fundamental system of seminvariants of $q_{3}$ is given by $b_{3}, P, A, \Delta, J_{3}$.

It suffices to prove that they completely characterize the classes of forms $q_{3}$ under the group $G$. We have

$$
q_{3}=q_{2}+l x_{3}+b_{3} x_{3}^{2}, \quad l \equiv c_{13} x_{1}+c_{23} x_{2} .
$$

(I) $b_{3}=P=0$. Then $l$ is not identically zero and can be transformed within $G$ into $x_{2}$. In $q_{2}+x_{2} x_{3}$ we replace $x_{3}$ by $x_{3}+c_{12} x_{1}+b_{2} x_{2}$ and obtain $\Delta x_{1}^{2}+x_{2} x_{3}$.
(II) $b_{3}=0, P=1$. Then $l \equiv 0, q_{3}=q_{2}$. Thus $A=$ $c_{12}+1$ and $J_{3}=J_{2}$, which completely characterize the classes $q_{2}(\S 2)$.
(III) $b_{3}=1, P=1$. In $q_{3}=q_{2}+x_{3}^{2}$ we replace $x_{3}$ by $x_{3}+b_{1} x_{1}+b_{2} x_{2}$ and obtain $c_{12} x_{1} x_{2}+x_{3}^{2}$, where $c_{12}=A+1$.
(IV) $b_{3}=1, P=0$. As in (I), we may set $l=x_{2}$. Re-
placing $x_{3}$ by $x_{3}+b_{1} x_{1}$, we may set also $b_{1}=0$ in $q_{3}$. Then $\Delta=c_{12}, J_{3}=\left(c_{12}+1\right) b_{2}$. Thus, if $\Delta=0, q_{2}=J_{3} x_{2}^{2}$. But, if $\Delta=1$, we replace $x_{1}$ by $x_{1}+b_{2} x_{2}$ and get $q_{2}=x_{1} x_{2}$. In either case, the coefficients of the final $q_{3}$ are determined by the seminvariants.

Corollary. There are exactly eleven linearly independent seminvariants of $q_{3}$; they may be taken to be $1, A, \Delta, J_{3}, A J_{3}$, $b_{3}, b_{3} A, b_{3} \Delta, b_{3} J_{3}, P, b_{3} P$.

In fact, the number of classes in the four cases was 2, 4, 2, 3, respectively. Hence (Lectures, page 13) there are exactly 11 linearly independent seminvariants. The 11 functions in the corollary can be proved to be linearly independent either in the usual direct manner or more simply by noting that any polynomial in $b_{3}, P, A, \Delta, J_{3}$ can be reduced modulo 2 to a linear function of the 11 by means of the relations

$$
\begin{gathered}
\Delta A=\Delta J_{3}=b_{3} A J_{3}=0, \quad P A=P \\
P \Delta=b_{3}(A+P), \quad P J_{3}=\left(b_{3}+1\right) J_{3}
\end{gathered}
$$

4. For $n=4$, the discriminant of $q_{n}$ is the Pfaffian

$$
[1234]=c_{12} c_{34}+c_{13} c_{24}+c_{14} c_{23}
$$

Another evident invariant of $q_{4}$ is $A_{4}=A u$, where

$$
u=\left(c_{14}+1\right)\left(c_{24}+1\right)\left(c_{34}+1\right)
$$

We shall employ the abbreviations

$$
\begin{aligned}
& B_{1}=b_{1}+\left(c_{12}+1\right)\left(c_{13}+1\right)\left(c_{14}+1\right), \\
& B_{2}=b_{2}+\left(c_{12}+1\right)\left(c_{23}+1\right)\left(c_{24}+1\right), \\
& B_{3}=b_{3}+\left(c_{13}+1\right)\left(c_{23}+1\right)\left(c_{34}+1\right), \\
& B_{4}=b_{4}+u .
\end{aligned}
$$

Then* $q_{4}$ has the further invariants

$$
\begin{gathered}
J_{4}=B_{1} B_{2} B_{3} B_{4}+b_{1} b_{2} b_{3} b_{4}[1234] \\
K=\Sigma b_{1} b_{2} c_{34}+\Sigma b_{1}\left(c_{23} c_{24}+c_{23} c_{34}+c_{24} c_{34}+c_{23}+c_{24}+c_{34}\right) \\
+[1234] \Sigma b_{1}+\Sigma c_{12}+\Sigma c_{12} c_{13}+\Sigma c_{12} c_{13} c_{14} \\
\\
+c_{12} c_{13} c_{24} c_{34}+c_{12} c_{14} c_{23} c_{34}+c_{13} c_{14} c_{23} c_{24}+\Sigma c_{12} c_{13} c_{24},
\end{gathered}
$$

[^1]the subscripts in the final sum being
\[

$$
\begin{array}{llll}
121324, & 121334, & 121423, & 121434, \\
131423, & 131424, & 122434, & 122334, \\
132324, & 132434, & 142324, & 142334 .
\end{array}
$$
\]

We have the seminvariants $b_{4}$ and $u$ since

$$
q_{4}=q_{3}+\lambda x_{4}+b_{4} x_{4}^{2}, \lambda=\sum_{i=1}^{3} c_{i 4} x_{i} .
$$

Theorem. A fundamental system of seminvariants of $q_{4}$ is given by $b_{4}, u,[1234], A_{4}, J_{4}, K$.

We prove that they characterize the classes $q_{4}$ under $G$.
(I) $b_{4}=u=0$. Then $\lambda$ is not identically zero and can be transformed within $G$ into $x_{3}$. In $q_{3}+x_{3} x_{4}$ we replace $x_{4}$ by $x_{4}+c_{13} x_{1}+c_{23} x_{2}+b_{3} x_{3}$ and get $x_{3} x_{4}+q_{2}$. Then $c_{12}$ $=[1234]$ and $J_{2}=K$ characterize the resulting classes (§2).
(II) $b_{4}=0, u$. $=1$. Then $\lambda \equiv 0, q_{4}=q_{3}$, and

$$
A_{4}=A, \quad J_{4}=J_{3}, \quad K=\Delta+A+1
$$

form a fundamental system of invariants of $q_{3}$ (§3).
(III) $b_{4}=u=1$. If $A_{4}=1, \quad q_{4}=\Sigma b_{i} x_{i}^{2}+x_{4}^{2}$. Replacing $x_{4}$ by $x_{4}+\Sigma b_{i} x_{i}$, we get $x_{4}^{2}$. If $A_{4}=0$, we may take $c_{12}=1$, replace $x_{1}$ by $x_{1}+c_{23} x_{3}, x_{2}$ by $x_{2}+c_{13} x_{3}$ and have $c_{13}=c_{23}=0$. Replacing $x_{4}$ as before, we get $x_{1} x_{2}+x_{4}^{2}$.
(IV) $b_{4}=1, u=0$. We may set $\lambda=x_{3}$ as in (I). Replacing $x_{4}$ by $x_{4}+c_{13} x_{1}+c_{23} x_{2}$, we have $c_{13}=c_{23}=0$. Then $[1234]=c_{12}$.

First, let $c_{12}=0$. Then $K=\left(b_{1}+1\right)\left(b_{2}+1\right), J_{4}=b_{3} K$. If $K=1$, then $b_{1}=b_{2}=0, b_{3}=J_{4}$, and $q_{4}$ is fixed. If $K=0$, we may set $b_{1}=1$, replace $x_{1}$ by $x_{1}+b_{2} x_{2}+b_{3} x_{3}$ and get $b_{1}=1, b_{2}=b_{3}=0$.

Second, let $c_{12}=1$. Then $J_{4}=0, K=b_{1} b_{2}+b_{3}$. Replace $x_{1}$ by $x_{1}+b_{2} x_{3}, x_{2}$ by $x_{2}+b_{1} x_{3}, x_{4}$ by $x_{4}+b_{1} x_{1}+b_{2} x_{2}$. We get

$$
x_{1} x_{2}+K x_{3}^{2}+x_{3} x_{4}+x_{4}^{2} .
$$

Corollary. There are exactly sixteen linearly independent seminvariants of $q_{4}$; they may be taken to be the invariants

$$
1, k=[1234], A_{4}, J_{4}, K, A_{4} J_{4}, k K
$$

the products of $b_{4}$ by the preceding other than $A_{4} J_{4}$, and

$$
u, b_{4} u,\left(b_{4}+1\right) u \Delta
$$

For, the number of classes in the four cases was $4,5,2,5$, respectively. Any polynomial in the six seminvariants given in the theorem can be reduced to a linear function of the sixteen in the corollary by use of*

$$
\begin{gathered}
k A_{4}=k J_{4}=A_{4} K=0, \quad J_{4}\left(K+A_{4}+1\right)=0, \quad b_{4} A_{4} J_{4}=0 \\
u A_{4}=A_{4}, \quad u k=0, \quad u J_{4}=\left(b_{4}+1\right) J_{4}, \quad u K=\left(b_{4}+1\right)\left(u+A_{4}+u \Delta\right)
\end{gathered}
$$

5. Consider a covariant of odd order $\omega$ of $q_{4}$

$$
C=S x_{4}^{\omega}+S_{1} x_{4}^{\omega-1} x_{1}+\cdots .
$$

Now $x_{4}=x_{4}^{\prime}+x_{1}^{\prime}$ replaces $q_{4}$ by $q_{4}^{\prime}$ in which

$$
\begin{equation*}
c_{12}^{\prime}=c_{12}+c_{24}, \quad c_{13}^{\prime}=c_{13}+c_{34}, \quad b_{1}^{\prime}=b_{1}+b_{4}+c_{14} . \tag{1}
\end{equation*}
$$

If the latter replaces $S_{1}$ by $S_{1}^{\prime}$, we have $S_{1}^{\prime}=S_{1}+S$. Hence $S$ has no term with the factor $c_{12} c_{13} b_{1}$. Of the functions in the corollary, only $J_{4}, A_{4} J_{4}$, and $b_{4} J_{4}$ contain $c_{12} c_{13} b_{1}$, and its coefficients in them are linearly independent. Hence

$$
S=I+b_{4} I_{1}+c u+d b_{4} u+e\left(b_{4}+1\right) u \Delta
$$

where $I$ and $I_{1}$ are linear combinations of $1, k, A_{4}, K, k K$.
From geometrical considerations (Lectures, page 72),

$$
L=(k+1)\left\{\left(B_{1}+1\right) x_{1}+\cdots+\left(B_{4}+1\right) x_{4}\right\}
$$

is a covariant. The coefficients of $x_{4}^{\omega}$ in $i L^{\omega}\left(i=1, A_{4}, K\right)$ are

$$
(k+1)\left(b_{4}+1\right)+u, A_{4} b_{4},\left(b_{4}+1\right)\left(K k+K+A_{4}+u+u \Delta\right)
$$

After subtracting multiples of $i L^{\omega}$ from $C$ we may therefore assume that $c=e=0$ and that $I_{1}$ is free of $A_{4}$.

First, let $\omega=1$. Thus $S_{1}$ is derived from $S$ by permuting the subscripts 1 and 4. Then $S_{1}^{\prime}=S_{1}+S$ gives
$I=c_{14} I_{1}+d\left(c_{14}+1\right)\left\{b_{1}\left(c_{24} \alpha+c_{12} c_{34}+c_{34}\right)+b_{4}\left(c_{12} \alpha+c_{13} c_{24}+c_{13}\right)\right\}$,
where $\alpha=c_{13}+c_{34}+1$. Let $\Sigma$ denote the sum of the second member and the function obtained from it by interchanging the subscripts 1 and 2 . Thus $\Sigma=0$. Taking $c_{24}=c_{14}$, we

[^2]see that $d=0$. Thus $\left(c_{14}+c_{24}\right) I_{1}=0 . \quad$ Apply $x_{2}=x_{2}^{\prime}+x_{1}^{\prime}$, whence
$$
c_{13}^{\prime}=c_{13}+c_{23}, \quad c_{14}^{\prime}=c_{14}+c_{24}, \quad b_{1}^{\prime}=b_{1}+b_{2}+c_{12}
$$

Then $c_{14} I_{1}=0$. Hence every $c_{i j} I_{1}=0, I_{1}=l A_{4}$. But $I_{1}$ is free of $A_{4}$. Hence $I_{1}=0, I=0, S=0$.

Theorem. Every linear covariant of $q_{4}$ is a linear function of $L, A_{4} L, K L$.

Next, let $\omega>1$. After subtracting from $C$ a constant multiple of $q_{4} L^{\omega-2}$, whose leader is $b_{4} u$, we have $d=0$ in $S$. Express $S_{1}$ as a polynomial in $c_{12}, c_{13}, b_{1}$, and call $p$ the coefficient of their product. The coefficient of $c_{12} c_{13}$ in $S_{1}^{\prime}-S_{1}=S$, found from (1), is $p\left(b_{4}+c_{14}\right)$, and hence vanishes if $b_{4}=c_{14}$; while $S$ itself vanishes if also $c_{24}=c_{34}=0$. Applying these two conditions to $S=I+b_{4} I_{1}$, we find that

$$
S=\left(b_{4}+1\right) k(n+m K), \quad n, m \text { constants. }
$$

Several tests failed to exclude this leader. Whether or not there are covariants with such a leader $S$ is not discussed here.

In this connection, note the covariant

$$
\Sigma c_{i j}\left(x_{i} x_{j}^{2 r}+x_{i}^{2 r} x_{j}\right) \quad(i, j=1, \cdots, 4 ; i<j),
$$

obtained by replacing the variables in the polar of $(x)$ with respect to $q_{4}$ by $x_{k}^{2^{r}}(k=1, \cdots, 4)$.
6. By means of the corollary in $\S 4$, and transformation (1), we readily obtain the

Theorem. Every quadratic covariant of $q_{4}$ is a linear function of $L^{2}, K L^{2}, I q_{4}$, where $I$ is an invariant.

University of Chicago, June, 1914.

## THE CONVERSE OF THE HEINE-BOREL THEOREM IN A RIESZ DOMAIN.

BY DR. E. W. CHITTENDEN.
(Read before the American Mathematical Society, April 11, 1914.)
In various generalized forms of the Heine-Borel theorem*

[^3]
[^0]:    * American Mathematical Society Colloquium Lectures, volume IV, New York, 1914; cited later as Lectures.

[^1]:    * Proc. Lond. Math. Soc., ser. 2, vol. 5 (1907), p. 308.

[^2]:    * The first four from the table of the paper last cited, p. 311.

[^3]:    * Cf. M. Fréchet, "Sur quelques points du calcul fonctionnel," Rendiconti del Circolo Matematico di Palermo, vol. 22 (1906), p. 26; and T. H. Hildebrandt, "A contribution to the foundations of Fréchet's calcul fonctionnel," Amer. Jour. of Mathematics, vol. 34 (1912), p. 282.

