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of o)u is seen to be 

HXuXJ> + 2HXuVuXY + HMJ* + 2HXu,uXZ 

+ 2H^JZ+H^Z\ 
Equations (12), with F replaced by H, reduce this to the form 

Hn(X>+ P + Z 2 ) 2 = F n . 

Similarly the coefficients of œuœv and ccv
2 can be proved equal 

to 2Hi2 and H22 respectively. The other coefficients will be 
called #00, 2Hoi and 2H(& respectively, and equation (11) 
becomes 

52J = e2 ƒ ƒ ( i W + 2H0iœœu + 2H^œœv + Hnœu
2 

+ 2Hi2u)uœv + H220ov
2)dudv. 

This equation is in the same form as equation (5), and from 
this point on the argument is so nearly the same as in the non-
parametric case that it need not be repeated here. The 
analogue of inequality (10) is seen to be 

Hn(x, y, z,xu, --,zv; X)H22(x, y, z, xu, • • -, zv; X) 

— #i22(#, y, z,xu, • • -, zv; X) ^ 0. 
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1. IN a recent article,* Fréchet has given a treatment of 
the differential of a function depending on a curve, by making 
use of and evaluating Riesz's expression of a linear relation 
in terms of a Stieltjes integral. According to Fréchet, if 

b 

F[(p] depends on all the values of <p(x) between a and b, then 
a 
* M. Fréchet, "Sur la notion de différentielle d'une fonction de ligne," 

Transactions of the American Mathematical Society, vol. 15 (1914), pp. 
135-161. 
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if the differential of F exists it is given by the formula 

(1) dF[<p(x)] = f ' à t â ) d a & ) , 
Ja 

where Â >(£) is the increment in <p, and a^(£) is some function 
of finite variation. On the other hand, Volterra* has shown 
that, under certain conditions, the variation of F is given by 
the formula 

(2) 8F[<p(x)] = C F'MxMMSW, 
Ja\ 

where F'<p[(x) | £] is the functional derivative of F with respect 
to <p(x) at the point £. The integral in (1), however, according 
to Fréchet, itself splits up into three parts, of which one has a 
form similar to (2), so that as a special case we should have 

(3) dF[<p(x)] = f A[<p(x) | ÖA*(Ö#. 
•Ja 

It is the object of this short paper, in the first place, to derive 
the formula (2) under slightly less restrictive conditions than 
those of Volterra, and in the second place, by adopting a point 
of view more akin to that of Fréchet, to show the relation 
between equation (1) and equations (2) and (3). 

2. We shall consider as a region for the argument <p(x) 
that included between two given continuous functions $i(x) 
and *2(#), where $i(x) < $2(x), in the interval a ^ x g 6; 
i. e., the region 

$i(x) g <p(x) S $2(%), a^x^by 

and we shall assume that F[<p] is defined for every continuous 
function in that region, and is continuous.f This we shall call 
the assumption (a). 

In addition to (a), in order to obtain formula (2), Volterra 
makes four assumptions I-IV. By a different method of 
proof, however,—the one which we first adopt—it is possible 
to arrive at (2) by means of (a), (II) and (III) alone, from which 

*V. Volterra, "Sopra le funzioni che dipendono da altre funzioni," 
Rendiconti delta R. Accademia dei Lincei. vol. 3 (1887), pp. 97-105, 141-
146. 153-158. 

f We mean that F[<p] has continuity of the zeroth order. 
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IV follows, but not (I) in its entirety.* These assumptions 
are as follows. 

(II) Take an interval h within ah and give to <p(x) within h 
a continuous variation 6(x), of one sign, such that [ d(x) \ < e. 
Denote by AF the corresponding change of F, and write 

a = I 6(x)dx. It is assumed that the ratio AF[<r approaches 
Jh 

a fixed limit (denoted by F'[<p(x) | £] and spoken of as the 
functional derivative of F) as e and h approach zero in an 
arbitrary manner, provided that the interval h always contains 
within itself the value x = £.f 

(III) It is assumed that the ratio AF[cr approaches its limit 
uniformly with respect to all possible functions <p(x) and 
values £. 

Let us for convenience denote by (IIIi) that part of (III) 
which requires uniformity with respect to the functional 
argument alone. 

I. FIRST DEDUCTION OF FORMULA (2). 

3. The following theorem is introductory. 
THEOREM 1. If f or a certain continuous function <PQ(X) the 

function F[<p(x)], continuous in <p(x), has a derivative Ff[<p(x) | £] 
for every value of £ in a certain closed sub-interval a'b' of ab,% 
that derivative remains finite and continuous throughout a'b'. 

To prove this theorem, let £i, £2, • * • be any infinite set of 
values of £ in a'b1 having £0 as a limiting point, and suppose that 

F'[<Po(x) I £0] = *, lim F'[<po(x) \ f J = t'. 
» = 0 0 

We shall assume that f is finite; the case where t' is infinite 
occasions an obvious modification of the proof. Let 11—t' \ = p, 
and suppose momentarily p 4= 0. 

Give to <po(x) a variation of one sign, 6i(x), of the kind 
specified in (II), and take ei and hi so small that we have the 

* See § 4, and footnote. 
t We understand here that 0(|) 4= 0. This restriction turns out to be 

immaterial, but makes the definition correspond more closely to that of the 
ordinary derivative, where a restriction somewhat related to this is essential 
to the nature of the operation. 

This definition requires obvious modification when £ = a or b and when 
<p(x) — &i(x) or $2(x). 

t In particular, we may take a' = a and b' = b. 
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inequality 

(4) | F[cpo(x) + 0i(*)] - F[(Mx)] t<T! \< ;v<n 

We may, however, by taking a variation 02, small enough, and 
about a point £n near enough to £o, and adding to it a variation 
03, small enough everywhere, yet different from zero at £o, 
obtain a variation 0i for which is satisfied the inequality 

(5) 
F[<po(x) + 02(a) + 0z(x)] - F[<p0(x)] 

~ t'(<T2 + <T8) | < 2 p(ö-2 + <?*) 

For, since JF is assumed to be continuous, the increment 03 
may be made so small as to affect the difference F[<po + 82] 
— F[<po] by as little as we please. But from (4) and (5), by 
taking 0i = 02 + 03, it follows that 

\(t-t')(<T2 + <rz)\ < p I <ra + o-s I, 

which is a contradiction. Hence p — 0, and the theorem is 
proved. 

4. Let us now make the assumptions (a), (II), (IIIi). It 
follows at once that the derivative F'[<p(x) | £] is continuous in 
regard to <p(x), if £ is any fixed value in the interval ab. For 
we have 

F[<p(x) + 0(x)] - F[<p(x)] 
F'mx) J £| < t], 

and on account of the condition of uniformity, 

\F'Wt{x)\&-F>[<pl(x)\C\\ 

^ 1 lla{F[<p2(x) + 6(x)] - F[Vl(x) + 6(x)}} \ + 2r,. 

Hence first fixing the e and h corresponding to d(x) small 
enough so that 2rj is less, say, than co/2, we can then take <p2 
near enough to <pi, the 6(x) being fixed, so that the other part 
of the expression is also less than co/2. That is to say, by 
taking | <pi(x) — <pi(x) \ small enough, we can make the left 
hand member of the inequality as small as we please. Hence 
F' has continuity of the zeroth order with respect to <p. 

From this it follows that Ff is continuous uniformly with 
respect to <p, if <p is restricted to any family of curves whose 
ordinates are uniformly continuous functions of a finite 
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number of parameters, over a perfect domain for those param
eters, or if <p is restricted to a family of curves closed in the 
sense that the limiting curves are uniform limits; but not that 
F' is continuous in <p uniformly with respect to all continuous 
functions <p in the given region, nor even that F' is continuous 
in £ uniformly for all continuous functions <p in the given region. 
If however we make the whole of assumption (III), it follows, as 
is easily verifiable, that F' is continuous in £ uniformly for all 
points £ and all continuous curves <p in the region, and hence 
that F' is continuous in £ and <p uniformly with respect to £ and 
<p, provided that <p is restricted to a family of continuous func
tions, closed in the sense that the limiting functions are uniform 
limits.* 

5. We can now prove, by means of the assumptions (a), 
(II), (IIIi), something analogous to Rollers theorem. 

THEOREM 2. Let F[<p(x)] be a function for which (a), (II), 
(IIIi) hold, and let F[<pi] = F[<p?\ = 0, where <p\ — <p2 is a 
function which does not change sign in the interval ab, and is 
different from zero only in the interval a'V. Then there is a 
function <po, of the pencil determined by <pi and <p2, and a value 
£0(a' ^ £o ^ V), such that F'[<p0(x) | £0] = 0. 

In fact, if we write F[<pi + co(<£>2 — <Pi)] as a function of co, 
F (co), it will be continuous in co, and for a certain value co = coo 
will attain its maximum or minimum. Let this value of co 
determine the function <po, and for the sake of definiteness, 
let us assume that F(co) — F(coo) is not positive if oo is in the 
neighborhood of coo. For the sake of definiteness also, let us 
assume that the functional derivative of F is positive when 
£ = b\ Then it must be positive throughout the whole of 
the closed interval a'b', unless it vanishes at some point of 
that interval, since it is continuous in £. Let us assume that 
it does not vanish. 

In order to show the falsity of this assumption, let us 
construct the functions 

t„tt(x) = 0 (a <^x <Lt, V ^x £b) 

(6) = (x - t){<p2(x) - <pi(x)} (f <; x ^ t + co) 

= co{<p2(x) — <pi(x)} (t + oo ^ x ^ b')> 

* This is essentially what Volterra uses as his postulate (IV). See loc. 
cit., p. 99 and p. 101. His postulate (I) is that if 0(x) is any variation of 
<p in h (not necessarily of one sign) in absolute value less than e, then 
| AF/eh | < M, uniformly. 
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and consider for what value of t, t = ty the difference 

F[Mx) + t»,t(x)]-F[<pQ(x)] 

attains its upper limit, if co is kept constant. We know that 
there will be such a value, since F is a continuous function of 
t, and we see directly that we can find co' small enough so that 
if co ^ co' that value must be greater than a'. For if not, on 
account of the uniformity of the condition (IITi) and the 
resulting continuity of the derivative with regard to its func
tional argument, it would follow that we might take e and h 
about a' so small that 

F[<p(x) + d(x)] - F[<p(x)] > 0, 

where 6(x) is any variation in the interval h, everywhere in 
absolute value less than e,* and <p(x) is any one of the functions 
<p(x) = <po(x) + \[/0)l *(#). But this means that we could take 
co small enough so that we should have F[<po+ùj(<p2—<pi)] 
—•F[<po] > 0, which would be contrary to hypothesis. 

Let us now take a series of values con which approach zero 
as a limit. The corresponding series of values tn of t has at 
least one limiting value, and any one of these limiting values, 
which may in particular be the point a', we may take as our 
£o. This gives us our contradiction. For if F'[<po(x) | £0] 
were not zero, we could, owing to the uniformity of the con
dition (IIIi), construct a function ŴM, t(%), with t < tn, for 
which we should have 

F[<P + ^.t]>F[<p + tan,tJ. 

Our theorem is therefore proved. 
6. The law of the mean is a consequence of this theorem 

in the same way as in differential calculus it is a consequence 
of Rolle's theorem. 

LAW OF THE MEAN.! Let F[<p(x)] be a function for which (a), 
(II), (IIIi) hold, and let <pi and <p2 be two continuous f unctions in 
the given region, such that <pi — <p2 does not change sign in the 
interval ab, and is different from zero only in the interval afb'. 

* If a' — a, it is taken for granted that <p2(o0 — <pi(a) and 0(a) need not 
necessarily vanish. ^ Also if b' = 6, it is assumed that wQb) — <pi{b) need 
not necessarily vanish. 

t This theorem is due to Volterra (loc. cit., p. 103) who establishes it by 
means of formula (2), and thus as a consequence of the hypotheses (a) 
(D-(IV). 
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Then there is a function <po of the pencil determined by <pi and 
<p2, and a value J0 ip/ ^ £o ^ V) such that 

(7) F[<pz(x)} - Ffaix)] = F'[<PO(X) \ io] f ivtix) - <px(x)}dx. 
•sa 

7. We may now proceed, by means of these theorems and 
the hypotheses (a), (II), (III), to establish the formula (2). 
Let us consider first a continuous function \f/(x) which does 
not change sign in the interval ab, and form the function 
F(œ) = F[<po + co^]. We shall endeavor to calculate dFjdo) 
for a? = 0. 

If we divide up the interval ab into parts a^a^i, every one 
of which is in magnitude less than ô, we can write 

*T*o + «*] - F[<Po] = 2 F[<p0 + *„, J - F[<po + *„, „ J 

+ F[<po + 0)\f/] — F[<po + «^ttf a], 

where ao = a and an = b. But this is the same as the ex
pression 

n-l 

CO X) F |>0 + ik»,. a1+1 + 7*#«. a, ~ ^„4, O | £i] 

X f (*„. „ - ft., ai+1)^ + i ^ 0 + <4\ ~ F[<p0 + *„. J , 
%)a 

where | yi \ < 1 and ai ^ £t- ^ ai+i. We may for our pur
poses take all the intervals equal, and also S = kco where k 
is any fixed number greater than 2. If then we take the limit 
of {F[<po+ u\p\ — F[<po]}/o) as œ approaches zero, we verify 
from the uniformity of assumption (III) and the results of 
§ 4 that dF/dœ exists for co = 0, and is given by the formula 

(8) (£L-J>[^>i*«-
Hence it follows that 

/ dF \ Ch 

(9) \fa)m^ = 1 F[(p{x) + «*(^«)* 
8. Consider now the general case where \f/(x) is an arbitrary 

continuous function. We can write it as^(a:) = yp\{x) + faix), 
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where 
*i(*) = *{*(*) + I *(*) I }, 

*»(*) = * { * ( * ) - ! * ( * ) | }, 
functions which do not change sign. Moreover if we consider 
the function F[<po + coi*i + co2*2] we have the formulas 

BF rh 

- - = y F'[<p0 + «1*1 + co2*21 Öfc(ö#, 

OF rh 

^ - = j F'[<P,+«1*1+a,2*21 a*2(ö(«. 

On account of the uniform continuity of F' over £ and the two-
parameter family of curves defined by coi and co2, it follows that 
dF/dcoi and dF/dcoï are continuous functions of coi and co2. 
Hence if we put coi = «2 = co, we find that dF/dœ exists and 
is given by 

dF fdF\ . (dF\ 
+ lo) l=w f du \doiJZl~Z \dœ2J 

which reduces to the form (9), since *i + *2 = *. For co = 0, 
equation (9) reduces to equation (8), which holds for any 
continuous function *(#), and is equivalent to (2). 

From (9) we obtain (with Volterra) another law of the mean 
in the form 

(10) F[<p(x) + *(*)] - F[<p(x)] = £ F'[<p(x) + ty{x) I E M ) * , 

where 0 < 0 < 1. 

I I . OTHER METHODS OF DEDUCING FORMULA (2). 

9. We may obtain the formula (8) and hence the formula (2) 
from more general points of view. One point of view, which 
we shall consider, is closely related to the ideas which have 
just been developed; a second is a modification of the pro
cedure of Fréchet. 

For simplicity let us replace (a) by a new hypothesis (a'), 
the difference being that F is defined not only for all con
tinuous functions in the given domain, but also for all functions 
in the given domain which have merely a finite number of 
discontinuities.* 

* It is sufficient for what follows if we admit merely discontinuities of 
the first kind, so called (Lebesgue). 

file:///doiJZl~Z


1915.] DERIVATIVE AND VARIATION OF A FUNCTION. 395 

Let yp(x) be a continuous function, of one sign, and construct 
the functions jpp(x) defined as follows: 

a ^ O ) = 0 (a <>x<a, fi<x<Lb) 

= \[,(x) (a <; x ^ ]8). 

Let us consider besides (a'), the following postulates (/3), 
(7): 

AF 
(j8) lim — exists (a ^ a' ^ V ^ 6), 

(o=0, a=a /, /3=ô' 0" 

where 
AF = F[<p(x) + coi,W] - *M*)] 

<r = w I a\l/fi(x)dx. 

This limit will depend on <p(x), \p(x), a' and h'\ let us call it 
G[<p{x), f(x) | a', 6']. 

(Y) Ö[^(^) , ^(#) | a', 6'] is continuous in <p(x). 

10. If (a') and (/3) are satisfied, we can verify directly that 
when a' and V are equal, the function G is independent of 
yp(x), and we can therefore write 

G[<p(x), Hx) | a', a'] = (?[?(*) | a']. 

If F happens to have a functional derivative i^, then 

(11) G[<p(x) | a'] = F'[<p{x) | a']. 

If (a') and (/3) are satisfied, we see also that if we let | a—a' |, 
| V — j8 | approach zero with co as functions of co, then 

(^%>G«0 + « . * • ( * ) ] ^ = G[^(*), *(*) I o', 61 j T *(*)<& 

if af =(= 6', and 
= 0 

if a' = 6'. 
11. If (a'), (j8), (7) are satisfied, we can deduce, by making 

use of partial derivatives as in § 8, that 

(13) 
Gfoix), *(*) | a', V] f *(x)dx + G[<p(x), *(*) I, b', c'] 

X I \p(x)dx = G[<p(x), \p(x) | a', c'] I \{/(x)dx. 
Jb' Ja' 
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And from this and the definition of G[<p(x) \ a'] it follows that 
G[<p(x), \[/(x) | a', b'] is a continuous function of its two argu
ments a', b' in the region a ^ a' ^ V ^ b, and is hence uni
formly continuous with respect to them. But these properties 
lead us to a formula equivalent to (8). For we have 

\d^F^+ ^ ) =0
 = ÖM*)' ^ I a' ® Ja tfàd*' 

and if we split the right-hand member into n parts, according 
to (13), and take the limit as n becomes infinite, remembering 
that 0 is uniformly continuous in a', 6', we obtain the result 

(14) ( ~ F[<p + wfr] ) ^ o = j f G[<p(x) | ÉhKödÉ, 

where \p(x) is any continuous function which does not change 
sign. This again is generalized to hold for any continuous 
function \p(x), by the method of § 8.* Therefore, formula (14), 
where \[/(x) is any function continuous a ^ x ^ 6, is a con
sequence of postulates (a')9 (/?), (7).f 

12. It is now evident what sort of restriction is sufficient 
in order that formula (1) may reduce to (2). In fact we can 
deduce (14) from (a') and the two following hypotheses: 

(j8;) Let \p(x) be any limited function, continuous except 
for a finite number of discontinuities (of the first kind) ; then 
we assume that 

( = * • + « • ] ) . -
exists and is distributive with respect to \f/, i. e.,— 

+(£* '+•* ' ) , • • . 
* If in the definition of G[<p(x), \j/(x) \ a', b'] we do not allow œ to change 

sign as it approaches zero, we are led to two functions G+[<p(x) | £] and 
G~[<p(x) I (•], whence, instead of (14) for the general ^, we have 

(140 {LFW + W^)w=o = If! {G+Mx) > Ö WÖ + I *(«) I ) 
+ ö-w*)ia(*(ö-i*(öi)W€. 

t If <p(x) = #i(a;), (̂a?) cannot be negative; if <p(x) = $2(2), \[/(x) cannot 
be positive. 
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(7') The function G[<p(x) | £] defined in (/3) exists for 

The postulate (/?') is substantially the hypothesis used by 
Fréchet with (a) in defining the existence of a differential.* 
Moreover if we restrict ourselves to a function \[/(x) of one 
sign, we see that the function 

n>r t \ u M / u\ v F&W + CMMS)] - F[<p(x)] G'[<p(x), \p(x) I a', 6'] *= hm p 
co I \f/(x)dx 

exists, provided that a' =f= 6', and from (/3') we see that the 
relation (13) holds with G' for G. And if we define 

Q'Mx), *(*) I a'a'] - 0fo(*), a'], 

it follows as in (11) that Gf is uniformly continuous in a' and 
V in the region a £ a' ^ b' ^ b. Hence we obtain again 
formula (14) for a function \{/ of one sign, and, finally, for any 
function \[/ if \{/ is limited and has merely a finite number of 
discontinuities (of the first kind). 

13. The advantage of the last set of assumptions (c/)> 
(00 > (TO is that they do not demand the continuity of 
G[<P0*0 | £], or jF'[p(aO | £] if it exists, with respect to the 
functional argument <p(x). If for a given <p(#), we suppose 
that G[<p(x) | £] does not exist for certain special values of £, 
we have the case that F depends in a special manner on <p(x) 
for those values of œ.f The case where A[<p(x) | £] in (3) is 
discontinuous comes under this specification. The property 
of possessing a functional derivative in general, however, 
seems to depend on fundamental properties of continuity 
with respect to aggregates of functions, the study of which is 
thereby rendered specially inviting. 

THE RICE INSTITUTE, 
February, 1915. 

* M. Fréchet, loc. cit., p. 141. In order to justify the substitution of a 
postulate akin to (a') rather than («) see F. Riesz, "Les opérations fonc-
tionelles linéaires," Annales scientifiques de VEcole Normale Supérieure, 
vol. 31 (1914), p. 2, who shows that a linear relation such as that expressed 
in the conception of differential can always be extended by definition to 
apply to certain classes of discontinuous arguments. 

t V. Volterra, loc. cit., p. 144. 


