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ments, we may proceed afresh, since Dp is of the same form 
as D, but contains only the functions/2, ƒ3, • • -, fP. Reason
ing as above, we find that these p — 1 functions are linearly 
dependent, and hence also the p given functions, unless the 
(p — 2)-rowed determinant in the upper right-hand corner 
of Dp vanishes identically. In the latter case we must con
tinue in the same way, until we finally reach a determinant 
in the upper right-hand corner of D which is not identically 
zero. But there must be one such, unless fp(t) is itself identi
cally zero, in which case the given p functions are linearly 
dependent. The theorem for analytic functions as stated in 
Mr. Morse's note therefore follows. 

I t may be of interest to point out that many—if not all— 
of the theorems on linear dependence in which wronskians 
or determinants and matrices constructed like wronskians 
are involved* have their analogues in corresponding the
orems in which appear determinants and matrices resembling 
the determinant Z). 
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§ 1. Introduction, 

I N a note published in the BULLETIN in 1914f I established 
an algorism on a class of surfaces associated with line con
gruences in 3-space, which result by translation from invari
ants of plane n-lines. I t is the purpose of this paper to apply 
symbolical methods to the study of some properties of these 
surfaces. 

Two non-homogeneous forms of respective orders m, n, in 
Plücker's line coordinates p\, p2, qi, q^ r [r = (pq)], con
sidered together, represent a congruence (m, n). For the sake 
of symmetry let the variables be changed to the homogeneous 
system 

* Such, for instance, as are given by Bôcher, loc. cit., and by Curtiss, 
Math. Annalen, vol. 65 (1908), pp. 282-298. 

t BULLETIN, vol. 20, p. 233. 
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£i = Pu & = P2, h = gi, ?4 = ?2, & = r, 

& = 1 ; ( f e = $ i $ 4 - f e & ) . 

Then these forms may be written 

ƒ» = («i£i + • • • + «6?6)OT = « f
m = aè'

n 

gn = Oifi + • • • + ftfc)» = ft» = ft'" = • • •• 
The generating line of (m, n) is 

&3l — ilXz — £3#4 = 0, £6#2 — fe&S — £4̂ 4 = 0, 

and this generator is contained in an arbitrary plane wx = 0 
provided 

£iwi + Ç2W2 + &ws = 0, 

(1) &Wl + &W2 + £6W4 = 0, 

&Wl + ?4^3 — ?2^4 = 0. 

§ 2. T7^ Surfaces Associated with (m, 1). 

A canonical form of (m, 1) is furnished by the pair 

f m = 0, & + 1 = 0, 

and if we replace £5 by — 1 in fm the latter becomes the non-
homogeneous 

or, setting a% — a5 = «5 and introducing, for homogeneity, a 
new £5 ( = 1) in place of £6> /w becomes the quinary form 

fim = (a A + • • • + as&)w = a£» = a / m . 

From (1) we obtain, after replacing the old £5 by — 1, and 
solving, 

(2) & = X*£i + /x»& ( i = l , - , 5 ) , 

where £ 5 = 1 , and 

Xi = jLt5 = 1, Mi = X5 = 0, X2 = — wi/w2, 

(3) M2 = — WW2, X3 = ^4/^3, M3 = — WW3, 

X4 = — WiWtlwïWz, jJLA = (WiW2 — WzW4)/w2Ws. 
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We now eliminate £2, %z, & from/ i w by the substitutions (2), 
giving 

O A = «Ai + • • • + «5X5). 

The coefficients of .F are rational expressions in the planar 
coordinates w\, • • -, W4; hence any invariant I of this binary 
form translates into a homogeneous quantic <p(w) in the w's 
representing the surface enveloped by the plane wx — 0 when 
the latter moves so as to intersect the congruence (ra, 1) in 
an m-line which maintains the property represented, pro
tectively, by I = 0. Since every invariant of F is a linear 
combination of products of factors of type 

(aaf) = axa2 — a2ai'; I = ^k(aa'Y(aa")q • • -, 

we must compute (aa') in order to obtain <p(w) explicitly. 
We find 

4 r5-i 

i = i j = i 

(4) (oia')pq = apo:g ' — a ^ a / . 

THEOREM. 77^ cZa&s (order in wi, • • •, w4) of the translation 
surface <p(w) = 0 equals twice the weight of the invariant I. 

In proof, it is evident from (4) that the order of <p in Xi, 
• • '9 X5, /JLU • • •, /X5 is twice the weight of I; but these quantities 
X, ju, when reduced to the common denominator w2Ws, have 
numerators of dimensions 2 in wi, • • •, w±. Nevertheless, 
from (3), we calculate 

(X/z)i2 = — W ^ 2 , (X/x)i3 = — ^ 2 / ^ 3 , 

(Xjlt)l4 = (W1W2 — WzW4)/w2Wz, (X/i)iB = 1, 

(5) (X/X)23 = O 1 W 2 + WzW4)lw2WZ) (XjLt)24 = — Wi2/w2WS, 

(X/X)2B = — W ^ 2 , (X/x)34 = ~ W±2/w2WZ, 

(XjU)35 = W ^ 3 , (XM)45 = — WiW4lw2Ws. 

Hence the theorem is proved. 
The explicit symbolical form of <p(w) is manifest from (4) and 

(5) in a form free from adventitious factors;* in fact (aa') is 

* If I is the discriminant of F the order of <p(w) is 2m(m — 1). Non-
symbolical methods used in my former paper suggested 4m (m — 1) for 
this order, but the present theory shows that there is always an adventitious 
factor (a product of powers of wh •••, w4) reducing it to 2m(m — 1). 
That no further reduction is possible is shown by an example in my previous 
paper. 
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proportional to 

W = (cece') 24W12 + (aaf)nW22 + (aaf)i2w^ + (aa')^** 

(6) + (aaf) 14(^3^4 — Wiw2) — (aa!)n(wsW± + W1W2) 

+ (aa!) 25^1^3 — («a') 15^2^3 + («a') 45W1W4 

— (aa ' ) 35W2W4, 

and (aa") differs from W only by the replacement of (aa!) 
by («a") . 

The degree of <p(w) in the coefficients of fim equals the 
number of symbols in I . 

For illustration, if m = 2 the only invariant of F(%i, £5) is 
its discriminant (aa')2. We may write the quinary form ƒ12 
as follows: 

ƒ12 = 2ai£&j = oi2 (i,j = 1, • • -, 5; a# = a^). 

Squaring W we readily compute ç>(w), here a surface of class 4 
and degree 2, viz., 

<p(w) = | J P = («22̂ 44 — a24
2)Wl4 

+ 2 (a i 4 a 2 4 — «44^12 + #23^24 ~~ ^22^34)W\ZW2 + • • ' . 

§ 3. The Congruence (m, n). 

Assuming the linear form of the pair representing the 
congruence (m, 1) in canonical form f5 + 1 enabled us to 
derive for the result of the elimination (2) a binary form F 
whose invariants represent projective properties of the m-line 
in which wx = 0 cuts (m, 1). We now show that the corre
sponding elimination in the case of a plane cutting (m, n) 
gives a pair of ternary forms whose simultaneous invariants 
represent projective properties of the mn-line of intersection. 

Solution of equations (1) with £5 4= — 1, gives 

(7) & = A;£2 + Mi& + v& (i= 1, • • -, 6), 
where 

Xi = — W2/W1, ^2 = 1, X3 = 0, X4 = 0, 

X5 = wjwi, X6 = 0, 

Mi = 0 , /*2 = 0, M3 = — W2/W1, M4 = 1, 

Ms = — W ^ i , Me = 0, 

?1 = — W ^ l , ^ 2 = 0 , Ps = — W4/W1, Z>4 = 0 , 

^5 = 0 , ï>6 = 1, 
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and, employing (7) to eliminate £1, £3> £5 from fm, gn, there 
result the respective ternary forms 

fim = («xfe + aM& + oiv^)m = a$m = a / w = • • •, 

gin = (ft& + ft,£4 + tó)n = &** = V* 
where, for example, 

ax = aiXi + «2X2 + • • • + QfoXe. 

Any invariant I of the pair of forms fim, cj\n is a linear combina
tion of products of third order determinants of the two types 

(oaf a"), (aa'b). 

Evaluating the typical case of the second type, we deduce, by 
a known theorem on determinants of arrays, 

= X ) (aa'P)ijkfay<v)ijJc 

<xA aM av 

(8) (aa'b) = aK' a/ av 

I ft /3M ft 

0', j , fc = 1, • • -, 6; i < j < h, (aa'l3)ijk = |a,-a/j8*|). 

The number of terms in the summation in (8) is 6^3 = 20. 
Substitution from (8) etc. in 

1 = ^h(aa'a"Y(aa'by ••• 

gives a homogeneous form ç>(w) of degree in the coefficients 
of fim, gin, jointly, equal to the number of symbols occurring 
in I. 

We now prove that the class of this surface equals twice the 
number of determinant factors (aa'b), • • • occurring in any 
term of I. This number equals the power of the determinant 
of the collineations in the invariant relation for I , i. e., the 
index. I t is called the weight of I by some writers, and, with 
this terminology, we now require the proof of the precise 
theorem stated in § 2, for the present ternary case and con
gruence (m, ri). 

Calculating the 20 determinants (X/xj>)#fc and writing, for 
brevity, (kiip)ijk = (i, j , k), we have 

(1, 2, 3) = wïwzlwf, (1, 2, 4) = — wz/wh 

(1, 2, 5) = w^lwi\ (1, 2, 6) = 0, 
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(1, 3, 4) = - wzwjwx2, (1, 3, 5) = 0, 

(1, 3, 6) = w2
2/wi2, (1, 4, 5) = wsWt/wi2, 

(1 , 4, 6) = — W2/W1, (1 , 5, 6) = w2Ws/wi2, 

(2, 3, 4) = wi/wi, (2, 3, 5) = — w^w^/wi2, 

(2, 3, 6) = - w2/wi, (2, 4, 5) = 0, 

(2, 4, 6) = 1, (2, 5, 6) = - ws/wh 

(3, 4, 5) = W M 2 , (3, 4, 6) = 0, 

(3, 5, 6) = W2W4/W12, (4, 5, 6) = — wjw%. 

Since the non-vanishing fractions in w\9 • • •, W4 all have 
second order numerators and a common denominator wi2, the 
theorem is proved. Substitution of these results in (8) and 
the results from (8) in I gives the explicit form of the trans
lation surface <p{w), in a form free from extraneous factors. 

I t is obvious that a complete set of invariants gives, in the 
present case of the congruence (m, n) or in the previous binary 
case of (m, 1), a fundamental system of translation surfaces. 
For the congruence (2, 2), cut by a plane in a quadrilateral, 
the complete system consists of four surfaces {aa'a")2, (bb'b")2, 
{aafb)2, (abb')2, all of degree 3 and class 4. 

UNIVERSITY OF PENNSYLVANIA. 
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(Read before the American Mathematical Society, April 24, 1915.) 

ONE of the most wholesome tendencies in the study of 
mathematics today is the desire to give increased attention 
to the history and genesis of the subject. This tendency has 
led to a more careful study of the works of the old Greek 
mathematicians. Of these Pappus of Alexandria was among 
the last, and from the point of view of the historian one of 
the most important because it is in his works that we have 
the only authentic account of the lost works of a large number 
of preceding mathematicians. 


