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yi, %yi, • • •, xr~xy\ a r e aH solutions while xry\ is not a solution. 
If r is greater than unity, the solution is said to be repeated. 
If yi is a repeated solution, then it must also satisfy the equa
tion 

naoD^y + (ft - l)aiZ>"~2?/ + • • • + an.iy = 0, 

that is, the equation obtained from (1) by formal differentiation 
with respect to D. The first elements of the theory of repeated 
solutions of (1) and a certain more general class of equations 
thus suggested is developed on a simple postulational basis. 

ARNOLD DRESDEN, 
Secretary of the Section. 

ELEMENTARY INEQUALITIES FOR THE ROOTS OF 
AN ALGEBRAIC EQUATION. 

BY PROFESSOR R. D. CARMICHAEL. 

(Read before the American Mathematical Society, October 27, 1917.) 

1. L E T US write the general algebraic equation in each of the 
following forms:* 

xn = a\xn~l + 022xn~2 + azzxn-z + • • • + an
n, 

(1) xn = cnlaixn~l + cn2a2
2xn-2 + • • • + cnna^, 

where 
at* = Cnidi1 = j8< (i = 1, 2, • • -, n) , 

and cni, cn2, • • •, cnn denote the binomial coefficients for the 
power ft. 

If we let X denote the greatest absolute value of a root of 
equation (1) and let a denote the greatest absolute value of 
the quantities \OL\\9 \OL<L\, • • •, \an\, then, as was shown by 
Carmichael and Mason,f we have X ^ a, the equality sign 

* The fruitful and convenient notation employed in the first equation 
was suggested to me by my friend and colleague, Dr. A. J. Kempner. 

fThis BULLETIN, vol. 21 (1914), pp. 14-22. Carmichael and Mason 
stated the theorem for the equation whose roots are the reciprocals of those 
of (1). 
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holding in a special case, namely, for the equation (x — a)n=0. 
Birkhoff, in the same volume,* reproduced Carmichael and 
Mason's proof of this theorem and obtained further an upper 
bound for X, so that on combining the two theorems one has 

(2) a g X ^ ^ ^ j . 

The theorem in (2) was also proved independently by Jensen.f 
Notwithstanding the fact that the upper bound in (2) is 

attained in a special case, namely, that of the equation 
2xn — (x + oi)n = 0, it is far greater than needful in the case 
of certain types of equation, as, for instance, the binomial 
equation xn = an. Here the roots are in absolute value equal 
to a, while the Birkhoff-Jensen upper bound increases in
definitely as n increases. See an extension of the Birkhoff-
Jensen result in § 6 below. 

The upper bound in (2), as well as several related results, 
was obtained by FujiwaraJ by an ingenious method which 
we shall employ below in the derivation of several theorems. 

2. Carmichael and Mason (loc. cit., pages 21-22) also gave 
an upper bound to the roots of (1), showing indeed that 
(3) X^{1+ |ft|« + | f t | » + . . . + |/3„|«}t. 

Probably this bound is never attained. But if we denote by 
B the second member of (3) and choose e any positive quan
tity, however small, then we can find equations all of whose 
roots are in absolute value between JB(1 — e) and B. In 
fact it is sufficient to take a binomial equation xn = j3» and 
choose /?„ sufficiently large. Thus the upper bound in (3) is 
relatively close, in certain cases at least, when the upper 
bound in (2) is too great by as large a factor as one pleases. 
On the other hand, the bound in (3) is unsatisfactory in that 
it is greater than unity however small the coefficients of the 
equation may be. Fujiwara§ has employed (3) itself to obtain 
another bound not having this disadvantage, namely, that 
given in the relation 

* Ibid., vol. 21 (1915), pp. 494-495. 
t Nyt Tidsskrift, vol. 26A (1915), pp. 6-13. Some other related results 

are also given by Jensen. 
t Tôhoku Math. Journal, vol. 10 (1916), pp. 167-171. 
§ Tôhoku Math. Journal, vol. 8 (1915), pp. 82-85. 
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this being valid provided that the condition 

(5) |ft|2+ | f t | *+. . .+ 10.1» < _ L i 

is satisfied. He (loc. cit.) has also generalized (3) by showing 
that, when the roots x\, x2, • • •, xn of (1) are arranged so that 
\XA S \XA Û " ' = Ixn|, we have 

(6) | a : p | ^ | ^ 2 . . . x î > | 1 / ^ { l + | ^ | 2 + | f t | 2 + - - - + | / 3 n | 2 î ^ 

Kuniyeda* has given interesting generalizations of (3) and 
(4), showing that 

(7) X £ {l + (\h\1+p + | f t | 1 + * + - - - + |j8n|i+p)i/p}p/a+p>, 

{ <nn 

(^znj^idAi^+lAi1^ 
| p/n(l+p) 

+ • • • + |/3»|1+301/p} 
where p denotes any positive number, the latter relation being 
certainly valid only when 

(9) (|/?i|1+"+ ••• + \P»\l+*)1,p£^èr[-

Putting p = 1 in (7) and (8), wé have the special cases (3) 
and (4). 

The theorem in (3) and certain immediate related results 
have also been given by S. B. Kelleherf (without reference). 

For certain other discussions of inequalities related to those 
given above reference may be made to papers by KakeyaJ 
and Kojima.§ A new proof of some of the results in the 
latter paper will be given in the sequel.|| 

3. The principal object of the present paper is to derive 
(in §§ 5-10) numerous elementary inequalities for the greatest^ 
absolute value X of a root of equation (1). In every case the 

* Ibid., vol. 9 (1916), pp. 167-173; vol. 10 (1916), pp. 187-188. 
\Joum. de Math. (7), vol. 12 (1916), pp. 168-171. 
% Tôhoku Math. Journal, vol. 2 (1912), p. 140; vol. 3 (1913), p. 23. 
I Ibid., vol. 5 (1914), p. 54; vol. 11 (1917), p. 119. 
jj For two other very interesting inequalities on the roots of algebraic 

equations see Fejér, Math. Annalen, vol. 65 (1908), pp. 413-423 and Levy, 
Nouvelles Annales de Math. (3), vol. 11 (1892), pp. 147-148. 

IT In an obvious manner these yield corresponding inequalities for the 
least absolute value of a root of equation (1). 

file:///Joum
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method is altogether elementary. The results generalize a 
number of the known inequalities and contain several new 
ones of interest. I t is clear that numerous other inequalities 
may be obtained by a further use of the elementary methods 
here employed. 

4. The formula given by Carmichael and Mason (loc. cit., 
pages 21-22) for the exact value of X may be put into a shape 
more convenient for certain purposes than the determinant 
form in which they presented it. Let us consider the equation 

1 — axz — Ü22Z2 — . . . — an
nzn = 0, 

whose roots are t h e reciprocals of t h e roots of (1), and let £ 
denote a root of least absolute value of th is equat ion. Wr i t e 

(10) z ö-ö zrz = 1 + Ciz + c2z
2 + • • •. 

v 1 — aiz — (hz — . . . — an
nzn 

Now, t h e circle of convergence of t h e power series in t he second 
m e m b e r of th is equa t ion passes t h rough t h e point £. I t s 
rad ius of convergence is therefore equal to | £ | = 1/X. 
Therefore b y a well-known p rope r ty of power series we have 

(11) X = lim sup A/ I cm | . 
m=oo 

B u t from (10) i t is clear t h a t we have 

1 + (aiz + 022z2 H \- an
nzn) + {axz -\ h an

nzn)2 -\ 

= 1 + CiZ + C2Z
2 + 

Expanding the parenthesis quantities in the first member by 
means of the multinomial formula and equating coefficients 
of like powers of z, we have 

/ -I9Ï n - y ^ ~*~ il "*" ' ' ' "^ *") ^ n 'Vi 2'»/i 3<*. n «*n (IZ) Cm— Z, , | , | # # . | dl (h Cid '"dn y 

where the summation extends over all the non-negative values 
tu k, • • •, tn for which ti + 2fe + 3fe + • • • + ntn = m. Tak
ing (11) and (12) together we have the desired explicit formula 
for X in terms of the coefficients of equation (1). 

Though the value of X given in (11) and (12) is exact it is 
far too unwieldy to be useful in applications. 

By comparing the second member of (12) with the multi
nomial expansion of ( |« i | + \(h\ + • • • + | d n \ ) m and making 
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use of (11) one may readily show that 

(13) X S Kl + |aa| + •••+ h | . 
(A more elementary proof of this formula is given in § 7 
below.) It is obvious that the upper bound in (13) is actually 
attained in the case of binomial equations. 

5. Employing the method of Fujiwara,* we start with the 
inequality 

(14) p» ^ | a 1 | P - - i + | o 2 | y - 2 + . . . + K h 

which must obviously be satisfied by the absolute value p of 
any root of equation (1). If we suppose that 

Pn > *k\ak\
kpn~k (&= 1,2, • • • ,») , 

while the positive quantities X have the sum of their reciprocals 
not greater than unity, we shall evidently be led to a contra
diction with (14). Hence we have the central theorem of 
Fujiwara's paper, namely, t 

(15) X ^ max {\k
llk\ak\} {h = 1, 2, • . . , n), 

provided that the positive quantities X satisfy the relation 

(16) L + 1 + . . . + 1 ^ i . 
Al A2 A n 

Let us consider the question as to what values of the X's 
will make the bound afforded by (15) the lowest possible. It 
is easy to see that they are the values which render equal the 
n quantities in the second member of (15) and are such that 
the equality sign in (16) affords a valid relation. Supposing 
the X's chosen in this way, let us write 

(T = X&1 'k | ak | (k = 1, 2, • • •, n). 

Solving these equations for X& and substituting in (16) (with 
the sign of inequality replaced by the equality sign), we have 

<rn= | a i | ( 7 ^ + | o 2 | V - 2 + . . . + |an |». 

It is easy to see that this equation has a single positive root. 
Hence we are led to the following theorem, which we state in 
the notation of the third form of equation (1) : 

* Tôhoku Math. Journal, vol. 10 (1916), pp. 167-171. 
t The theorem obviously remains true if the equality sign is expunged 

from each inequality in it. 
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No root of the equation 

xn = piXn-l + p2Xn-2 + f_ ^ 

is in absolute value greater than the positive root of the equation 

*"= Iftk^H- |&kn-2+ ••• + 1&|. 
It is evident that this bound is actually attained in the case 

of any equation in which the jS's are positive or zero. More
over, it is clear that this is the lowest bound that can be 
obtained by the direct use of equation (14). Furthermore, 
it is obvious that a close approximation to this bound is 
readily obtained in the case of any numerical equation. 

6. From (16) it follows that X/t ^ 1; and thence, when (16) 
is satisfied, we see that 

(17) X ^ max {\k
h\ak\} (Jc = 1, 2, • • -, n), 

where lk is any real quantity not less than 1/fc. 
Applying this to an equation of t + 1 terms, we have the 

following result: 
The maximum absolute value X of a root of the equation 

(18) xn = yr-n*xni + 72n-ny2 + 1- 7*-in~n^n<-1 + yt
n, 

where n, ni, • • •, nt^i form a decreasing sequence of positive 
integers, satisfies the relation 

(19) X S max { X ^ I T * ! } (k = 1, 2, • • -, t), 

provided that the positive quantities X are subject to the condition 

(20) 1 + 1 + . . . + l ^ l t 
Al A2 ht 

If we consider the question as to what values of the X's will 
make the bound afforded by (19) the lowest possible we shall 
be led by the method of § 5 to the following theorem (giving 
such lowest bound) : 

No root of equation (18) is in absolute value greater than the 
positive root of the equation 

st= | 7 l | , * - i + | T 2 | V - 2 + | Y 3 | V - 3 + • • • + \yt\'. 

Taking X& = t in (19), we see that we have for equation 
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(18) the relation 
X£mnx{fl'k\yk\} (& = 1,2, ••• ,*) , 

a result given by Cauchy for the case t = n. 
Next, let us set 

x i 

" clfc(«te-l)** 
Then (20) is a valid relation. Hence we have through (19) 
the inequality 

Z ^ m a x ) ' g 1 - 1 ( i = 1,2, . . . , * ) . 
I ctk{ *v2 - 1) J 

The special case t = n is the Birkhoff-Jensen upper bound 
given in (2). The method of proof is that employed for this 
special case by Fujiwara in the Tôhoku Mathematical Journal, 
volume 10. For an equation of high degree and relatively 
few terms the bound is much closer than that of Birkhoff and 
Jensen. 

7. In relation (17) we may choose special values of the 
quantities h so as to obtain the relation 

X ^ Max {Xi|ai|, X2102[, • • •> X^|a^|, X^+i* | a*1+i |, •• -, 

X*2
è I ah I, X*2+1* I ah+11, • • •, \nvt I an \}, 

provided that the positive quantities X satisfy (16). If we 
consider the question as to what values of the X's will make the 
bound afforded by this relation the lowest possible we shall 
be led by the method of § 5 to the following theorem (giving 
such lowest bound) : 

No root of equation (1) is in absolute value greater than the 
positive root of the equation 

(21) r*= ( H + . . . + \ah\y-i+(\ah+1\>+ . . . 

+ Kl2>*~2+ ••• + (|a*„+i|«+ ... + klo. 
It is clear that one may prove in a similar way that 
No root of equation (1) is in absolute value greater than the 

positive root of the equation 

r«= (Jo,! + . . . + \ah\)r^+ (\ah+1\
k^ + ••• 

(22) + I ah I *>+V"*1-1 + • • • + (! aVl+11 k"+i+ • • • 
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In the former of the last two results, take t = 1; then we 
have 

X £ | «i | + | (h | + - • • + | ctn |, 

a relation obtained in § 4 above by less elementary means. 
In (21) let t = 2 and write 

\ai\ + ••• + \ah\ = *i, |a*1+1 |2+ ••• + |aw|2 = s2. 

Then we see that 
X ^h{si+ V ^ T ^ } . 

In particular, if a± = 0 we may take &i = 1 and show that 

X S ^k | 2 + |a3|2+ . . . + \an\\ 
More generally, if ai = 0 = «2 = • • • = a^-i, we have readily 
from (22) the relation 

x sMkh+ k+i|*+ ••• + |a»h 
We may also apply to (21) and (22) the theorems already 

proved for equation (1) and thus obtain other results for equa
tion (1) itself. Thus through use of (15) and (22) we see that 

X ^max{Xi (H + . . . + \akl\),[M\akl+i\?c^1+ ••• 

provided that the positive quantities X satisfy relation (20). 
8. In (19) let us take 

^ = | ^ p ( | 7 i | + | 7 2 | 2 + " - + | T * | ' ) . 

Then (20) is satisfied and from (19) we see that for equation 
(18) we have 

X ^ m a x { | 7 i | + | T 2 | 2 + • • • + |7*|T'* (& = 1,2, . . . , i ) . 

Hence for equation (18) we have 
[ t i ut t 

xs E W aEl-r . l '^ i ; 
I i= l J i=l 

(23) 
* £ £ | T < | ' i f E | 7 i | * ^ l . 

The method of proof here employed is identical with that 
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used by Fujiwara (loc. cit.) for the special case t = n. From 
the first relation in (23) we see readily that 

{ t \ 1/2* t 

*ZM2i if £ | T * I ' ^ I , i-\ J i-\ 
since 

as one may readily prove. 
9. The theorem of Fujiwara stated in relation (15) will 

also yield the upper bound given in (3). For the third form 
of equation (1) relation (15) may be written 

X ^maxJXjblftbl'}1'* (fc= 1,2, . . . , n ) , 

the positive quantities X being again subject to relation (16). 
For the proof of (3) it is obviously sufficient to show that (16) 
is satisfied if the X's have the values 

^ = h T | 3 > where \ = {1 + |ft|2 + • • • + \fi*\*Y». 

For the moment denote the first member of (16) by 8. Then 
we have 

S= \fa\r+ |ft|**+ . . . + |/S.|^ 

f 1 1 1/2 

^ {1 - i^}i/2< 1, since v< 1. 

Hence (16) is satisfied and (3) is proved. 
Since (3) is proved by aid of (15) it is clear that it can never 

afford a lower bound for X than that given in the italicized 
theorem of § 5. 

In a similar way one may prove the generalization (7) due 
to Kuniyeda. The method is essentially that of Kuniyeda's 
memoir. It is easy to see further that (7) can never afford a 
lower bound for X than that given in the italicized theorem 
in §5. 



1918.] ELEMENTARY INEQUALITIES. 295 

10. Prom the third form of equation (1) we have 

I s l ^ l ^ - f t a ; ^ 1 - pk\ £ |/3*+1|.H»-*+1 + 
••• + |A.|. 

Hence if 
\xk - jSi**-1 |8*| £ r (r > 0), 

we have 

Therefore the last inequality will certainly be satisfied if 

\Ak^ |AH*l*" l+ •• '+ |AwH*l + (|j8*|+r). 
Thence it is easy to see that 

The greatest absolute value X of a root of equation (1) satisfies 
the relation 

X ^ max {ph p2}, 

where pi and p2 are the positive roots of the equations 

(24) p*= | f t | p M + • • • + | f tw |p+( | f tb | + r ) , 

(25) P - * = \ | j 8 w | p " - ^ + ...+±\pn\, 

respectively, r being any positive quantity and h any integer less 
than n. 

This theorem itself may obviously be applied to either or 
both of equations (24) and (25) ; so that an upper bound to X 
may be obtained in terms of the solutions of equations of as 
low degree as one wishes. Thus, as a special case, we may 
take the equations to be linear and thus obtain the following 
result (found by Kojima* in a less elementary way) : 

x$,»«{lftl + *, iJ&L + * 

where rlf r2, • • •, iv-i are any positive quantities. 
* Tôhoku Math. Journal, vol. 11 (1917), pp. 119-127. The first two 

special cases noted had been given earlier by the same author, ibid., vol. 
5 (1914), pp. 54-60. 
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Taking each r equal to unity, we have the interesting special 
case 

X ^max{l+ Iftl, 1+ Iftl, •••,!+ |/M> |/3»|}. 
Again, it is easy to show also that 

X ^ m a x { | a | + |/3|, |jS| + | 7 | , •••, |X| + |ju|, | / i | ) , 

where the quantities a, 13, • • •, M are defined by the relations 

a = ft, /32 = ft, / V = ft, Py& = ft, • • -, 07 ' • -XM
2 = ft. 

Through other special choices of the quantities r numerous 
rather elegant special inequalities may be obtained, several of 
which are given explicitly by Kojima (loc. cit.). 

In case some of the coefficients of equation (1) are zero it 
may be preferable to employ the second italicized theorem in 
§ 6 and apply to it the principal theorem of this section (or 
the special cases of the latter). 

It is clear that other general formulas may be found for 
upper bounds to X by employing a sequence of equations 
each of which is linear or quadratic, such sequence arising 
by the repeated application of the theorem of this section. 

UNIVERSITY OF ILLINOIS, 

October, 1917. 

THE SOLUTION OF THE WAVE EQUATION BY 
MEANS OF DEFINITE INTEGRALS. 

BY PROFESSOR H. BATEMAN. 

THE wave equation 

d2V dW dW 1 d2V 
v ; dx2 ^ dy2 ^ dz2 c2 dt2 

is the oldest member of the family of partial differential 
equations, and although he was born without the second and 
third terms he soon acquired these and played a prominent 
part in mathematical physics at a time when very few partial 
differential equations had become famous. With the advent 
of the mathematical theory of elasticity and Maxwell's electro
magnetic theory of light he gained a new lease of life and more 


