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(5)| {{ajbz — a362)#i + (a3&i — aih)x2 + (ai&2 — a2bi)xz} 
X {SiX2XZ(x2 ~ Xz) + SiX^Xifa — #l) 

+ S&iX2(Xi — X2)} = 0. 

Clearly, the quartic degenerates into the #-line of the pencil 
of cubics, and into a cubic having (si, s2) sz) as the $-point. 
Hence the 

THEOREM: Any cubic of the net with a given S-point may be 
generated by any pencil of cubics within the net, not containing 
the given cubic, and the projective pencil of lines joining the S-
point of the given cubic to the S-points of the cubics of the pencil. 

Consider next two pencils of cubics Cx with the S-line I, 
and C^ with the /S-line m, and a point S, not on I or m. Draw 
any line g through S, cutting I and m in SA and SM, and con
struct the cubics Ck and C^ having #A and Sy as S-points. 

They both pass through the two fixed points P and P ' on g 
corresponding to each other in the Steinerian transformation. 
But P and P ' also lie on the cubic C8 associated with S as 
an /S-point. For a variable g through S, SA and fiy describe 
two perspective point sets on I and m which are projective with 
the pencils of cubics Ck and C^. These pencils are therefore 
themselves projective, and generate the cubic Cs. Hence the 

THEOREM: Every cubic of the net associated with a Steinerian 
transformation may be generated in an infinite number of ways 
by projective pencils of cubics of the same net 
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THEOEEM I: Given 

(1) ^c(K1(x)y1') + O1(x)y1=0 

and 

(2) 4(£.(a)î&') + G*(aOvj = 0, 
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where K\, K2, G\ and G2 are real and absolutely integrable in 
the Riemann sense over the interval a ^x ^b, and where 
0 < K2 S Kx and 0 < Gx < G2. 

Let 2/1 and y2 be particular, not identically vanishing, solutions 
of (1) and (2) respectively such that either 

Case I yi(a) = 0 

or 
Case II Ki(a)Vi'(fl) > K2(a)y2

f(a) 
2/iO) = 02(a) 

Let Vi(x) = ai(x)Ki(x)y/(x) + a2(x)yi(x), i = 1, 2, where 
ai(x) and a2(x) are real f unctions defined and continuous when 
a û x S b and such that a\(x) =)= 0 at any point and a2{x)ja\{x) 
never decreases as x increases. Assume that yi(a) ^ 0, y2(a) ^ 0 
and Vi(a) -V2(a) ^ 0 and that, if V2(a) = 0, V\(a) = 0 also. 

If Vi{x) has a root at a point c, where a < c ^b, then V2(x) 
has a root at a point d, where a < d < c. 

Without loss of generality we assume a\ > 0. If a\ < 0 
we simply change the signs of both cei and a2. 

Case I. Assume yi(a) > 0 and, if y2(a) = 0, y2(a) > 0 
also, in which again there is no loss of generality. Let I = a 
+ 8 where 8 > 0 is very small. Then 

•Ki2/i;2/2 - K2y2'yi]l
a = I (G2 - Gx)yiy2dx 

+ f (Ki - K2)yi'y2'dx. 
Ja 

In case y2{a) = 0 and 8 is suflSciently small, 2/12/2 > 0 when 
a < x ^ I and 2/1/2/2' > 0 when a ^ x ^ I. Consequently 

gifflyi'g) K2{l)y2
f{l) 

2/i(0 2/2® 
If y2{a) 4= 0 this result is immediate from the continuity of 
2/1, 2/i'> 2/2 and 2/27. Replace the point a by the point I and 
Case I reduces to Case II. 

Case II. Assume that V2(x) does not have a root on the 
interval a < x < c and assume that c is the first root of V\{x) 
greater than a. Choose yx(a) = y2(a). 

(a) Suppose V2(a) > 0 and consequently Vx(a) > 0. 
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+Jrc*-w*+r*(«^7*.. 
yi and y2 are both positive over the interval of integration since 

gi(s)yi ' (g) 

becomes negatively infinite as x approaches c, and similarly 

K2{x)y2
f(x) 

becomes negatively infinite as x approaches the first root of 
2/2 greater than a. Consequently 

Xi(c)2/i'(c)2/2(c) ~ K2(c)y2'(c)yx(c) > 0. 

Combining this with Vi(c) = 0, we get yi(c)V2(c) < 0, which 
is impossible. 

(6) Fa(a) ^ 0 and VM £ 0. 

^ m ( i = 1 , 2 ) 

decreases as # increases, as is proved by differentiation. Con
sequently yi{x) = 0 to the right of a necessarily before Vi(x) 
= 0. Suppose 2/i = 0 at g, where g < c; then, as is well 
known, y2 = 0 at h where h < g. There is only one such 
point less than c, for by hypothesis V2(x) has no root when 
a < x < c. Take a point I = g + ô, where ô is small. At this 
point, with 8 small enough, we have the same situation as at a 
under (a) if y2 is replaced by y2 multiplied by such a constant 
as to cause y2(l) to equal 2/1 (0 and then 2/1 and 2/2 replaced by 
— 2/1 a n d — 2/2 respectively. 

THEOREM II. Let 2/1 and 2/2 &# <wy two not identically 
vanishing solutions of (1) and (2) respectively and let 

Vi(x) = ax(x)Ki(x)y!(x) + a2(x)yi(x) (i = 1, 2). 

Between any two successive roots of Vi(x) on the interval 
a ^ x ^b lies at least one root of V2(x). 

* This is a well known identity. It can easily be verified. 
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Suppose two successive roots of Vi(x) at cx and c2 respec
tively. Without loss of generality we assume yi(c\) > 0 and 
2/2(ci) ^ 0; if 2/2(01) = 0, y2{c\) > 0. Since in addition 
Ki(x)yi(x)/yi(x) decreases in x and a\ > 0, V\(x) < 0 when 
cx < x < c2. 

Case I. V2(x) < 0 when c\ < x < c2. Conditions at a of 
Theorem I, Case II b, are fulfilled at ci. 

Case II. V2(x) > 0 when Ci < x < c2, 2/1 = 0 at g, where 
ci < g < c2, since Ki(x)yi(x)/yi(x) always decreases. At g we 
have the conditions of Theorem I, Case I, 2/1 being replaced 
by - 2/1. 

Suppose next that we have the equation 

(3) ^ (K{x, W ) + G(x, X)y(x) = 0, 

where K(x, X) and G(x, X) are real and continuous in X, 
— oo < X < oo, for any x, and with respect to x absolutely 
integrable in the Riemann sense from a tob, and where K > 0 
never decreases as X increases, and C actually increases from 
values less than or equal to zero to values as large as desired 
and is such that, for a particular X, G = 0 in x or does not 
vanish at all. 

Consider (3) subject to the boundary conditions 

faKia, \)y'(a) + (32y(a) = 0, 
W

 aiK(b, \)y'(b) + a2y(b) = 0, 

where ah a2, /3i and /32 are real constants, ax > 0 and /3i 
and |82 are not both zero. 

Let V(x) = ctiK(x, \)y'(x) + a2y(x). It is to kept in mind 
that from now on ai and a2 are constants. 

Define K(x,X) and G(x,\), when œ > 6, thus: K(x,\) 
— K(x, b) and 6r(z, X) = G{x, b). 

Let 2/, not identically equal to zero, satisfy the first of equa
tions (4). Then notice that V and V' are continuous in X and 
that they do not simultaneously vanish when G ^ 0. 

Moreover when 6? = 0 and V(x) 4E 0, V{x) has at most one 
root on the interval a ̂  x ^ 6, as is readily proved by solving the 
equation. Consequently in this case when G > 0 but suffici
ently small, V(x) has only one root on the interval a ^ x ^ 6. 
V = 0 is only possible when F = 0 reduces to 2/' = 0. For 
values of G > 0 but sufficiently small in this instance, V #= 0 
at all on the interval a < x ^ b, since K(x, ^)yf(x)/y(x) 
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decreases as X increases. Moreover when X is sufficiently 
large, as is well known, y and consequently V have as many roots 
as desired when a < x < 6. Using these facts and Theorems 
I and II we now readily prove the following: 

THEOKEM III. There exist unique mlues, Xi < X2 < X3 
< • • •, such that when X = Xy, j = 1, 2, 3, • • •, a solution y 
of (3) exists satisfying (4) such that V(x) has exactly j roots on 
the interval a < x < b. 

We can extend this to j = 0 if, when G = 0, V has no root 
on the interval a < x < b. 
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IN considering infinite systems of linear equations 
CO 

(1) HaijXj = x/ (i= 1,2, • • •)> 

particular interest is attached to those whose solutions pre
serve the properties of the solutions of a set of n linear equa
tions in n variables. It is known* that the system (1) pos
sesses this property if a# = dij — b^ {du = 1; dij = 0, i =j= j), 
where the infinite matrix B = (&#)*, y=i, 2, ... is completely 
continuous.! The discussion of Riess deals only with the 
special case a# = d^ — &#, but it is easily found that his 
proof holds for the more general case stated below. The 
proof of the theorem of this note is not given since it differs 
only in minor details from the proof of the theorem given by 
Riess. 

It will be said that a matrix Ai is a sub-matrix of the matrix 

* Cf. F. Riess, Equations Linéaires, p. 94. 
t Cf. F. Riess, loc. cit. 


