THE DERIVATIVE OF A FUNCTIONAL.

```
BY PROFESSOR P. J. DANIELL.
```

In his book on Integral Equations* Volterra has given a definition of the derivative of a functional and has stated somewhat restricted conditions under which the variation can be expressed as a linear integral. In the present paper it is shown that, under more general conditions, the variation is a linear functional in the sense of Riesz* and, therefore, a Stieltjes integral. This theorem is assumed as a condition in a paper by Fréchet. \dagger Let

$$
F[f(\underset{a}{b})]
$$

denote a functional F of a continuous function $f(x)(a \leqq x \leqq b)$. With Volterra we shall consider only continuous functions. Let us denote the first variation by

$$
D(f ; \varphi)=\lim _{\epsilon \equiv 0} \frac{1}{\epsilon}\{F[f+\epsilon \varphi]-F[f]\} .
$$

In place of Volterra's four conditions we take the two following:
I. $F[f]$ satisfies the Cauchy-Lipschitz condition, namely that we can find a number M such that

$$
\left|F\left[f_{1}\right]-F\left[f_{2}\right]\right| \leqq M \max \left|f_{1}(x)-f_{2}(x)\right|
$$

II. The first variation $D\left(f^{\prime} ; \varphi\right)$ exists for all continuous φ, and all continuous f^{\prime} in the neighborhood of f; that is to say that a number $\eta>0$ can be found so that the variation exists so long as

$$
\max \left|f^{\prime}(x)-f(x)\right| \leqq \eta
$$

Under these conditions the variation is a linear functional, and therefore a Stieltjes integral,

$$
D(f ; \varphi)=\int_{a}^{b} \varphi(x) d \alpha(x)
$$

[^0]In the first place

$$
\begin{align*}
D(f ; l \varphi) & =\lim _{\epsilon \doteq 0} \frac{l}{l \epsilon}\{F[f+\epsilon l \varphi]-F[f]\} \tag{1}\\
& =l D(f ; \varphi)
\end{align*}
$$

If we choose $\epsilon>0$ so small that

$$
\epsilon|l| \max \left|\varphi_{1}\right|+\epsilon|m| \max \left|\varphi_{2}\right|<\eta
$$

$D\left(f+\epsilon m \varphi_{2} ; \varphi_{1}\right)$ will exist by II, and
$F\left[f+\epsilon l \varphi_{1}+\epsilon m \varphi_{2}\right]-F\left[f+\epsilon m \varphi_{2}\right]=\epsilon l D\left(f+\epsilon m \varphi_{2} ; \varphi_{1}\right)+\epsilon \delta$,

$$
F\left[f+\epsilon l \varphi_{1}\right]-F[f]=\epsilon l D\left(f ; \varphi_{1}\right)+\epsilon \delta^{\prime}
$$

where δ, δ^{\prime} approach 0 with ϵ. Then

$$
\begin{align*}
P\left(l \varphi_{1}, m \varphi_{2}\right)= & \lim _{\epsilon \doteq 0} \frac{1}{\epsilon}\left\{F\left[f+\epsilon l \varphi_{1}+\epsilon m \varphi_{2}\right]-F\left[f+\epsilon m \varphi_{2}\right]\right. \\
& \left.-F\left[f+\epsilon l \varphi_{1}\right]+F[f]\right\} \tag{2}\\
= & l \lim _{\epsilon \doteq 0}\left[D\left(f+\epsilon m \varphi_{2} ; \varphi_{1}\right)-D\left(f ; \varphi_{1}\right)\right] .
\end{align*}
$$

Similarly
(3) $P\left(l \varphi_{1}, m \varphi_{2}\right)=m \lim _{\epsilon \doteq 0}\left[D\left(f+\epsilon l \varphi_{1} ; \varphi_{2}\right)-D\left(f ; \varphi_{2}\right)\right]$.

The expression (2) is the product of l and a function of m independent of l, while (3) is the product of m and a function of l only, and they are equal. Each must be a product of $l m$ and an expression K independent of l, m.

$$
P\left(l \varphi_{1}, m \varphi_{2}\right)=\operatorname{lm} K\left(\varphi_{1}, \varphi_{2}\right)
$$

In this make $l=1=m$; then

$$
P\left(\varphi_{1}, \varphi_{2}\right)=K\left(\varphi_{1}, \varphi_{2}\right)
$$

Or

$$
P\left(l \varphi_{1}, m \varphi_{2}\right)=\operatorname{lm} P\left(\varphi_{1}, \varphi_{2}\right)
$$

Making $m=l$,

$$
P\left(l \varphi_{1}, l \varphi_{2}\right)=l^{2} P\left(\varphi_{1}, \varphi_{2}\right)
$$

But

$$
\begin{gathered}
P\left(l \varphi_{1}, l \varphi_{2}\right)=l \lim _{\epsilon \neq 0} \frac{1}{\epsilon l}\left\{F\left[f+\epsilon l \varphi_{1}+\epsilon l \varphi_{2}\right]\right. \\
\left.\quad-F\left[f+\epsilon l \varphi_{2}\right]-F\left[f+\epsilon l \varphi_{1}\right]+F[f]\right\} \\
=l P\left(\varphi_{1}, \varphi_{2}\right) . \\
\therefore \quad l^{2} P\left(\varphi_{1}, \varphi_{2}\right)=l P\left(\varphi_{1}, \varphi_{2}\right) \\
P\left(\varphi_{1}, \varphi_{2}\right)=0 .
\end{gathered}
$$

Or
$\lim _{\epsilon \in=0} \frac{1}{\epsilon}\left\{F\left[f+\epsilon \varphi_{1}+\epsilon \varphi_{2}\right]-F[f]-F\left[f+\epsilon \varphi_{2}\right]\right.$ $\left.+F[f]-F\left[f+\epsilon \varphi_{1}\right]+F[f]\right\}=0$,

$$
D\left(f ; \varphi_{1}+\varphi_{2}\right)-D\left(f ; \varphi_{2}\right)-D\left(f ; \varphi_{1}\right)=0 .
$$

Combining (1) and (4), we see that

$$
D\left(f ; c_{1} \varphi_{1}+c_{2} \varphi_{2}\right)=c_{1} D\left(f ; \varphi_{1}\right)+c_{2} D\left(f ; \varphi_{2}\right)
$$

Thus the variation is distributive in φ. Secondly, from condition I,

$$
|F[f+\epsilon \varphi]-F[f]| \leqq M_{\epsilon \max }|\varphi|,
$$

or

$$
|D(f ; \varphi)|=\lim _{e=0} \frac{1}{\epsilon}|F[f+\epsilon \varphi]-F[f]| \leqq M \max |\varphi| .
$$

The variation is also bounded, considered as an operation on φ. This proves it to be a linear functional by Riesz's definition. To find the integrating function $\alpha(x)$ we may proceed as follows:

Let $\varphi(x ; c, d)$ denote the continuous function,

$$
\begin{aligned}
\varphi & =1, & a \leqq x \leqq c, \\
& =0, & d \leqq x \leqq b,
\end{aligned}
$$

φ linear from c to d.
Then

$$
\alpha(c)=\lim _{d \dot{ }} D(f ; \varphi),
$$

and in general for any continuous $\varphi(x)$,

$$
D(f ; \varphi)=\int_{a}^{b} \varphi(x) d \alpha(x) .
$$

Rice Institute,
Houston, Texas.

[^0]: * V. Volterra, Equations Intégrales, p. 12 et seq. F. Riesz, Annales de l'Ecole Normale Supérieure, vol. 31 (1914), p. 9.
 \dagger M. Fréchet, Transactions Amer. Math. Society, vol. 15 (1914), p. 135.

