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ON THE NUMBER OF REPRESENTATIONS OF 2n 
AS A SUM OF 2r SQUARES. 

BY PEOFESSOR E. T. BELL. 

(Read before the San Francisco Section of the American Mathematical 
Society April 5, 1919.) 

1. OWING possibly to its connection with X-ray analyses of 
crystal structure, interest in the problem of representing an 
integer as a sum of integral squares has recently revived. 
We shall first summarize briefly so much of what is known of 
the problem as will put the formulas established below in their 
proper light. Let N(n, 2r) denote the total number of 
decompositions of n into a sum of 2r squares. Then, for 
r = 1, 2, 3, 4, the complete results concerning N(n, 2r) are 
implicit in sections 40, 41, 42, 65 of the Fundamenta Nova. 
Jacobi, however, left the explicit statement of all but one of 
his results to others. When r > 4, N(n, 2r) is expressible 
in terms of the divisors of n alone. By arithmetical methods, 
independently of elliptic functions, Eisenstein* proved some 
of Jacobi's results, showed how the rest might be obtained 
from his own theorems, and proved that, f or r > 4 and n 
general, N(n, 2r) can not be expressed in terms of the divisors 
of n alone. Letting £/(w) denote the excess of the sum of the 
sth powers of all those divisors of n that are of the form 
4k + 3 over the like sum for all divisors of the form 4k + 1, 
and f8(n) the sum of the 5th powers of all the divisors, Eisen­
stein stated a notable exception to his general theorem; 
showing that at least once, when n is suitably chosen, N(n, 2r), 
for r > 4, may be expressed in terms of £8'(n), or fa(n). E.g., 
N(4k + 3, 10) = 12&'(44+ 3); or what may be shown is 
ultimately the same thing:f N(8k + 6, 10) = 204^(44 + 3). 
Liouville derived a similar result for N(2m, 12) in terms of 
f5(2m). He used for this purpose certain remarkable formu­
las J which, however, he did not prove, and which it is the 

* Crelle, vol. 35 (1847), p. 135. 
t Either result follows from the other on applying a transformation of 

the second order to the theta equivalent of the appropriate Liouville 
formula of the kind in § 2. 

î Jour, des Math. (2), vol. 6 (1861) ; two papers, p. 233, 369 et seq. The 
formulas for proper representations may be proved similarly to those in 
this paper. 
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object of this paper to establish; he also showed how the 
discovery of such results as Eisenstein's and his own can be 
made to depend upon the formulas mentioned. In 1907 G. 
Humbert* and K. Petrf independently proved Eisenstein's 
10-square, and Liouville's 12-square results very simply by 
elliptic functions. At the same time J. W. L. GlaisherJ pub­
lished complete results for N(n, 2r), r = 1 to 9, inventing the 
necessary functions for the cases r = 5 to 9. He remarked! 
that the form of his results seems to indicate the non-existence 
for r = 7, 8, 9 of theorems similar to Eisenstein's or Liouville's 
for r = 5, 6. Recently L. J. Mordell|| has found and de­
veloped close connections between Glaisher's theorems and the 
elliptic modular invariants. Liouville's formulas seem to have 
been overlooked by later writers. They offer a direct method 
of attack upon the question of completely expressing N(2n, 2r) 
in terms of the divisors of n alone; that is, of finding for what 
forms of n, r this is possible. The four formulas of Liouville 
are only the first cases of an infinite number of similar results 
which may be found as below, using higher powers than the 
first and second, or products, etc., of the elliptic series; and 
like results exist for N(m, 2r) where m is odd, Eisenstein's 
theorem being a consequence of one of these. As Liouville 
remarks, there is an extensive theory in connection with such 
formulas. Here we shall merely prove his four, and show 
how the required coefficients may be found. 

2. For m odd, Liouville's formulas are 

f a ( m ) B ( - l )(*+»/V(m); 

(1) r**-i(m) = KLAiN(2mf 4r, U + 2), (r > 0); 
*=0 

(2) &r(m) = É BtN{2m, 4r + 2, 4t + 2), (r ^ 0) ; 

and for n = 2a+2m, m odd, a ^ 0 

(3) 2<*+»ar2r+i(m) = E atN(ny 4r + 4, 4i + 4), (r > 0) ; 
*=0 

* Paris C. R., vol. 144, p. 874. 
t Archiv der Math., 1907, p. 83. 
t (1) Q. / . Jkf., vol. 38. The results are summarized in (2) : Proc. L. 

M. S. (2), vol. 5 (1907), pp. 479-90. 
§ Loc. cit. (2), p. 487, §.13. 
|| Q. J. M., vol. 48 (1917-18), Nos. 189, 190. 
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(4) 22-£2r(m) = £ (3tN(n, ér + 2, it + 4), (r > 0) ; 
*=0 

where N(n, r, s) = the number of representations of n as a 
sum of r squares, of which the first s are odd with roots > 0, 
and the last r —• s even with roots § 0* The coefficients A, 
B, a, /? depend upon r, but not upon m or w. Liouville states 
that for all values of r 

A0 = BQ = a0 = j3o = 1; 

a_i = 16-1, a-e-i = i6--2Mc 
where C denotes either A or ce; J9r > 0 when r > 0; and that 
recurring formulas exist whereby the successive coefficients 
may be calculated from the first. These assertions will be 
verified automatically in the proofs. We shall derive (1) 
from a comparison of the power series and Fourier develop­
ments of snu; and (2), (3), (4) in a like manner from cnu, 
sn2w, dnu respectively. 

3. The necessary series are, with 01 = 1: 

2T ^ qm/2 . mm 
snM = ^ s r^^ s i n -2X 

(5) 
= Zs2f-!(F)( - ir 1 Z ^ - U - M v ( 2 r - l ) l ' 

(6) cim = 7 ^ 2 7 3 — - c o s ^ r = Z C 2 r ( P ) ( - l ) 

(7) 

(8) 

&.K 1 + ?"> w o 2K SÎ y ' (2r) ! ' 

i 271TI , ^ qn niru~\ 
dnM = z - | _ i + S T T ^ c o s - r J 

-£#*(**)(-l)r f * (2r)!' 

s n ^ = 2 ( 7 ^ ) I Z „ qm)2- S j - f - ^ c o s - ^ J 

the first sums being with respect to n = 1, 2, 3, 4, • • -, and 
m = 1, 3, 5, 7, • • •. The £, C, D, S' are polynomials in k2 

with positive integral coefficients, and their known forms are 
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S*-i(#) = Z stkn; C2r(k
2) = E c«P(; 

(9) 
<V(F) = Z * ^ 2 ' ; Z>2r(A;2) = WC»Q.IV), 

the last from the relation cn(ku, 1/k) = dnw. Also, for all 
values of r we have * 

SQ = Co = 1; s0' = s'r-i = 22r~1; sr-t-i = *«; 
( 1 0 ) *V-*-i = */; cr_x = 22-2. 
Henceforth, unless otherwise indicated, n represents an arbi­
trary integer > 0, m an arbitrary odd integer > 0, and sum­
mations are with respect to all m or all n. We shall need the 
following constants: 

nm/2m2r—l nmJ2m2r 

(11) S 2 j — s = S qm'%r-i(m) ; S f— = S q^%r(m), 

the right members coming directly from the definitions of £, £' 
in § 1, on expanding each term on the left and rearranging all 
in ascending powers of q. Writing for the moment 

(12) n = 2°m, £r"(w) = 2"fr(m), f/(n) = 2"fr(m), 

we have also 
Qn„2r Qnn2r+1 

(13) s j ^ s = 2?"&"(«); ^ = S f f W i W . 

The necessary theta constants are, êa = #a(g) : 

(14) y]-f=ê3 = j:qn*; k = ^2; «?2 = 2 2 ^ ; 

whence, for 6, c integers ^ 0, we have, obviously 

(15) #2&(?4)<V(?4) = S qn[2hN(n, b + c, b)]. 

For passing from representations to compositions, the following 
is useful: 
(16) <W)<V(94) = S gw[^fa, b + c, 6)], 

*The third of the relations (10) is from sn(kx, 1/k) = Jcm(x, k); and 
the fourth follows from this by actually forming the product snw X snw, 
and noting that the coefficient is necessarily a reciprocal polynomial in k2. 
It is important for the verification of Liouville's at coefficients to observe 
that So' = s'r-i = 22r_1, which may be seen at once from Sz/ik2), whose 
absolute term is |[(1 + l)2r - (1 - 1)21. 
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where N'(n, p, q) is the number of representations of n as a 
sum of p squares, the first q of which are odd with roots < 0, 
and the last p — q even with roots $ 0. 

4. Equating coefficients of ( - l)r-hi2r'1l(2r - 1)! in (5), 
we find, on using (11), 

(17) | ( — J'2 <r'2f2)-i(m) = SWF) = 2 O", 

which, on substituting for h, K their values from (14), becomes, 
after some obvious reductions, 

(18) 4 2 qm'^2r-i(m) = Z «jtfj**"**-**-*. 

From (6), in the same way, 
r - l 

f 19) 4 S qmi%r(m) = Z c<#2
4m#34r-4'. 

Chahging g into g4 in (18), (19), and applying (15), we get 
r - l 

(20) Ur-i(m) = Z 2ustN(2m> 4r, 4* + 2) ; 
<=0 

r - l 

(21) ?2r(m) = Z 2uctN(2m, 4r + 2, 4* + 2) ; 

by equating the coefficients of q2m in the respective series. 
To verify Liouville's statements about the coefficients At, Bt 
of § 2, we note that (20), (21) become respectively (1), (2) on 
putting At = 2ust, Bt = 2ilct; hence by (10) the verification 
is complete. The calculation for (8) is similar to the foregoing. 
We find first, on using (13), 

/ 7 r \2 r+2 r-l 

which reduces to 

(22) 2™ S g"f'*+i(«) = £ s/a^o^"; 

and this, on expressing f' in terms of f, by (12), substituting 
#4 for q, and using (16), becomes, for n = 2am, 

2^ 
A 8 1 

r - l 

(23) 2^2r+1>f2r+1(m) = E 24<-2r+ViV(4n, 4r + 4, 4* + 4). 
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Corresponding to (22), (7) gives, on substituting for D2r its 
value in terms of C2r from (9), 

whence 

(25) 22^2 S ?»&/'(**) = E c^24 r"4^34 m ; 
r - 1 

(26) 22a^2r(m) = E^^~ 4 < -W(4n, 4r + 2, 4r - 40, 

the last by changing q into q4 in (25) and equating coefficients 
of q4n; n = 2am, a ^ 0. This may clearly be rewritten 

(27) 22a%r(m) = Z 24M'+V-*-iiV(4n, 4r + 2, 4* + 4). 

Again, on writing at = 24<-2H-V, ft = 24t-2r+2cr-t-i, we see 
by (10) that these coefficients have the properties announced 
by Liouville, and that (23), (27) are identical with (3), (4). 
The r-limitations r ^ 0, etc., in (1) to (4) are obviously met. 

5. The coefficients s, s' of (20), (23) may be calculated by 
recurrence, as shown by Gudermann.* The coefficients of 
(21), (27) are more easily found by Hermite's method, f 
But whichever method is used, the computation involves 
great labor if r > 20; and neither gives the c, s, s' as explicit 
functions of r, t. It would be desirable, for the consideration 
of several questions related to compositions as sums of squares, 
to have these functions of r, t explicitly. Thus, e.g., were 
they known, it would be possible, following Liouville's indi­
cations,!]; to state necessary and sufficient conditions that 

* Crelle, vol. 19 (1839), pp. 79-83. Some of the coefficients in Guder-
mann's § 115 seem to be incorrect, but the essential part of his method 
on p. 79 is unaffected by this. Another recurrence for the «-coefficients is 
given by sn'u = cnudnu, and this one enables us to apply Hermite's 
method to the calculation of the s, s' as well as the c. 

f " Remarques sur le développement de cos amx; " J. des Math. (2), 
vol. 9 (1869), p. 289; Pans C. R., vol. 77 (1863), p. 613. Apparently 
the quantities first denoted by A0, Ai, • • •, An in Hermite's paper should 
each be multiplied by (— l)w+1. In the rest of the paper they are taken 
with this meaning, so that the final results appear as intended. The 
misprint is of no importance for Hermite's purpose, but it is for ours; 
since otherwise the coefficients would not all be positive. 

% J. des Math. (2), vol. 6, pp. 234-5. If (28)-(31) of the present paper 
are used in this connection, the powers of 2 do not appear as factors (as in 
Liouville's illustration), but only the binomial coefficients. 
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N(2n, 2r) shall be a £, f-function of the divisors of n alone, 
for general r and n. The coefficients $, s', c, and hence A, 
B, a, j3 are clearly all integers > 0; but beyond this, and the 
few facts concerning them which were observed by Liouville, 
little if anything of arithmetical importance is known about 
them. The comparative largeness of their prime factors is 
significant. 

6. It will be worth while, for its bearing on the question of 
composition, to write down the formulas which correspond to 
(l)-(4), when the restriction that the odd squares shall have 
positive roots is removed. They are, from (15), (16), (20), 
(21), (23), (27), as follows: 

(28) H2r-i(m) = Ê 8tN'(2m, 4r, 4* + 2), 

(29) 4|2r(m) = £ ct N'(2m, 4r + 2, U + 2), 

(30) 2^ 1>+ 2^ 2 r_ 1 (m) = E st' N'{n, 4r + 4, 4* + 4), 

(31) 22(aH^1>^2r(m) = E <w_i N'{n, 4r + 2, 4t + 4), 

where m, n, r are as in § 2. 
7. For N(n, 2r) as defined in § 1, we have 

N(n, 2r) = ^(w, 2r, 0) + {\r)Nf(n, 2r, 1) 

+ <*rW(n, 2r, 2) + • • • + ^ ( n , 2r, 2r), 

where (?) = a!/6!(a — b) !. Hence, it is easily seen from (28), 
a sufficient condition that N{2m, 4r) shall be expressible in 
terms of the divisors of 2m alone is that the ratio st : (u+2) 
shall have the same value for t = 0, 1, 2, • • -, r — 1. This 
condition is satisfied for r = 3. When r = 4, 5, 6, it is not. 
Or again, if some but not all of Si, $2, • • •, Sr-2 are divisible by 
one prime > 4r, then clearly the condition is not satisfied. 
This criterion rejects r = 5, the prime factor 307 occurring 
in two out of the possible three terms; or this case is rejected 
by 83, which is a factor of only the middle term. Similar 
conclusions may be read from (29), (30), (31). 

THE UNIVEKSITY OF WASHINGTON. 


