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The identity just preceding relation (5) is a generalization 
of that involved in the classic transformation of Abel; for, if 
we replace Vi(x) by g(x), v2(x) by v(x), and f(x) by 1, we have 
the Abel identity 

n 

Jlg(xi)[v(xi) — v(xi-i)] 
n 

= - *E,v(xi-i)[g(xi) - g(xt-i)] + g(b)v(b) - g(a)v(a). 

It is obvious that a repeated use of (5) reduces the integral 
of f(x) as to a product V\{x)v2{x) • • • vn{x) to a sum of n integrals 
of functions as to v\{x), v2(x)} • • • , vn(%), respectively, under 
appropriate conditions like (6) and (7) and the hypothesis 
of the existence of these n integrals. The question arises 
naturally as to whether some simple identity exists, analogous 
to that employed in deriving (5), which would yield the entire 
result at once. It was through this question that I was led to 
identity (1). Having it, it is natural to extend the classic 
theorems about convergence of series previously obtained 
through the particular case which yields Abel's transformation. 
The reader will have no difficulty in obtaining through identity 
(1) the transformation of a Stieltjes integral mentioned at 
the beginning of this paragraph. 

UNIVEKSITY OF ILLINOIS, 
August, 1919. 

NOTE ON A PHYSICAL INTERPRETATION OF 
STIELTJES INTEGRALS. 

BY PKOFESSOR R. D. CARMICHAEL. 

(Read before the American Mathematical Society September 4, 1919.) 

STIELTJES was led to his definition of integral by what he 
called the problem of moments (see §24 of his memoir in 
Annales de la Faculté des Sciences de Toulouse, 1894). Con
sider on a straight line OX a distribution of (positive) mass, 
the mass m* being concentrated at the distance £»• from the 
origin 0. The sum S m ^ / he called the moment of order k 
of the mass with respect to the origin. He also considered 
the more general distribution of mass on OX which is such that 
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the mass on the segment (Ox) from 0 to a; is <p(x) where <p(x) is 
a non-decreasing function which is finite for every finite 
value of x. Let us consider the moment about 0, of order Jc, 
of the mass so distributed on the interval (ab) where a and b 
are both positive. Let w be a partition of (ab) of norm ô due 
to the points x0 = a, xi, • • • , #n-i, xn = b, and let £,- be a 
point of the interval (#i_i, Xi). Then for the moment in 
question we should obviously have the value 

n 

\imYj£ikW(%i) - <p(xi-i)}. 
0=0 *=1 

That is, the value of the moment of order k is expressed by 
the Stieltjes integral 

(1) f xkd<p(x). 

We thus have Stieltjes' physical interpretation of the integral 
(1) for each value of k, the function <p(x) being monotonie. 

The object of this note is to throw the physical interpre
tation of this integral into another form and to generalize 
the new form so as to afford a physical interpretation for the 
integral of f(x) as to any function v(x) of bounded variation. 

Let us consider the curve y = xk and a distribution of mass 
on that curve such that the mass on the segment from (0, 0) 
to (x, y) shall be <p(x). Then the integral (1) represents zhe 
usual (first) moment of the mass on the segment of y = xk 

from x = a to x = b with respect to the axis of x} as one sees 
readily from the foregoing finite sum of which the integral (1) 
is the limit. 

Now this interpretation of integral (1) admits of an obvious 
generalization. Let f(x) be any single-valued function of x 
which is bounded on (ab) and let positive mass be distributed 
along the curve y = fix) so that the mass on the segment from 
x = a to x = x shall be <p(x), where the functions f(x) and 
<p(x) have no common singularity and where the total mass 
involved is finite. Then the integral 

I f(x)d(p(x) 

exists and gives the value of the moment about the #-axis of 
the mass on the curve y = f(x) from x = a to x = b. 
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Thus we have a physical interpretation for the integral of a 
bounded function with respect to any bounded monotonie 
non-decreasing function. If we avail ourselves of the notion 
of negative mass we may obtain similarly a physical inter
pretation for the integral of a bounded function f(x) as to a 
function v(x) of bounded variation. 

Write v(x) in the form 

v(x) = v(a) + P(x) - N(z), 

where P(x) and N(x) are respectively the positive and the 
negative variation of v(x) on (ax). Then along the curve 
V = f(x) let us have a distribution of positive mass such that 
the positive mass on the segment from x = a to x = x is 
P(x) ; along the same curve let us have a distribution of nega
tive mass such that the negative mass on the segment from 
x = a to x = x is N(x). We suppose that neither P(x) nor 
N(x) is discontinuous at a discontinuity of f(x). Then the 
moment of the positive mass about the axis will be represented 
by the integral oîf(x) as to P(x) ; that of the negative mass by 
the negative of the integral of ƒ(#) as to N(x). Hence the 
algebraic sum of these moments, or the total moment about 
the a>axis, is represented by 

(2) fbf(x)dv(x). 

Such a physical interpretation of the integral is useful in 
giving one a better intuitive sense of its character and hence 
in affording a means of classifying its properties in his thought. 

If one is disturbed by the notion of negative mass which 
enters into the foregoing interpretation he may avoid its use 
by resorting to another range of physical phenomena. He may 
replace positive and negative mass by positive and negative 
magnetism. Then P(x) [N(x)\ would denote the total 
positive [negative] magnetism on the segment of y = f(x) 
from x = a to x = x and the moment would be taken with 
respect to the #-axis under a magnetic field of force of unit 
intensity in a direction perpendicular to the ^-plane. The 
moment will again be represented by the integral (2). 

It is obvious that this representation may also be modified 
into a geometrical one. Consider the cylindrical surface 
perpendicular to the ^-plane and intersecting it in the curve 
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y = ƒ(#). On the positive side of the ^-plane take the curve 
lying on this cylindrical surface and satisfying the condition 
z = P(x) ; on the other side take the curve lying on the cylin
drical surface and satisfying the condition z = — N(x). 
We thus intercept between two curves a part of the cylindrical 
surface for which x is on (ab). It is not difficult to form a fair 
intuitive notion of this portion of the surface since P(x) and 
N(x) are both monotonie non-decreasing. Then the integral 
(2) is the "area" of the part of this bounded cylindrical surface 
lying on the positive side of the ay-plane minus the "area" 
of that part lying on the other side. 

UNIVERSITY OP ILLINOIS, 
August, 1919. 

A DERIVATION OF THE EQUATION OF THE 
NORMAL PROBABILITY CURVE. 

BY PROFESSOR W. D. CAIRNS. 

(Read before the American Mathematical Society September 5, 1918.) 

THE symmetrica] distribution of magnitudes about their 
mean is commonly represented by a " polygon " whose equally 
spaced ordinates are proportional to the terms of the expansion 
of (1 + l)n. The statement is frequently made in textbooks 
without any proof that as n is increased indefinitely, the equal 
spaces and the vertical scale being properly controlled, the 
polygon approaches as its limiting form the normal curve 
y = ke~h*x*. The method here given for the proof of this 
theorem consists essentially in controlling what may be called 
the points of inflexion of the polygon so that these points 
approach predetermined positions on each side of the mean. 
Since an extended and rigorous proof of the probability 
theorem has been published,* it will suffice to indicate here 
the general plan of the proof. 

* E. L. Dodd, American Mathematical Monthly, vol. 20 (1913), p. 128. 
Since this paper was written, a proof by A. A. Bennett has appeared in 

this BULLETIN, volume 24, No. 10, page 477. In that proof the area 
(rather than the standard deviation, as used in the present paper) and the 
middle ordinate control the curve and Wallis's product formula for 7r/2 is 
used. Since the area and the standard deviation are alike fundamental 
in the applications to probability, statistics, theory of errors, etc., it would 
seem that each of these gives a natural method of approach. 


