A SET OF COMPLETELY INDEPENDENT POSTULATES FOR THE LINEAR ORDER η^{*}.

BY PROFESSOR M. G. GABA

(Read before the American Mathematical Society September 4, 1919.)
Professor E. V. Huntington has published \dagger three sets of completely independent postulates for serial order. His set A involves four postulates, which is as high a number of postulates as had been proved completely independent. In the present paper are given seven postulates which form a categorical and completely independent set for the linear order.

Our basis is a class of elements [p] and an undefined dyadic relation (called 'less than') among the elements. If we are given two elements $p_{1} p_{2}$ and if the relation p_{1} less than p_{2} holds, we will symbolize it by $p_{1}<p_{2}$. If the relation p_{1} less than p_{2} does not hold, we will symbolize it by $p_{1} \nless p_{2}$.

Our postulates are:
I. If $p_{1}<p_{2}$, then $p_{2} \varangle p_{1}$.
II. If $p_{1} \nless p_{2}$, then $p_{2}<p_{1} ; p_{1}, p_{2}$ distinct.
III. If $p_{1}<p_{2}$ and $p_{2}<p_{3}$, then $p_{1}<p_{3}$.
IV. If $p_{1}<p_{2}$, then there exists a p_{3} such that $p_{1}<p_{3}$ and $p_{3}<p_{2}$.
V. For every p_{1} there exists a p_{2} such that $p_{2}<p_{1}$.
VI. For every p_{1} there exists a p_{2} such that $p_{1}<p_{2}$.
VII. The class of elements $[p]$ form a denumerable set.

That the set is categorical follows from the fact that the seven postulates stated are the necessary and sufficient conditions for the linear order η. To show complete independence it will be necessary to cite $128\left(2^{7}\right)$ examples showing all possible combinations $(\pm \pm \pm \pm \pm \pm \pm)$ of our postulates holding and not holding. This is done by giving eight definitions of $<$, and sixteen sets of points such that each definition is applicable to every one of the sets, and every combination

[^0]of definition of＜and set yields a different example．The eight definitions give the eight（ $\pm \pm \pm$ ）groups of cases for the implicational postulates I，II and III，whereas each of the sixteen sets gives all the eight cases where any particular set（土土土土）of the existential postulates IV，V，VI and VII hold or do not hold．

For the independence examples，the set $[p]$ consists of points on a line such that

IV V VI VII				
1）---	$p=-3$,	$-2 \leq p \leq 2$,	$p=3$	and p real．
2）---+	$p=-3$ ，	$-2 \leq p \leq 2$,	$p=3$	and p rational．
3）- －+	$p=-3$ ，	$-2 \leq p<3$,		and p real．
4）$-1++$	$p=-3$,	$-2 \leq p \leq 3$,		and p rational．
5）-+-		$-3<p \leqq 2$,	$p=3$	and p real．
6）-+-+		$-3<p \leq 2$,	$p=3$	and p rational．
7）-++-	$-3<p \leq 3 / 2$,	$2 \leq p<3$ ，		and p real．
8）-+++	$-3<p \leq 3 / 2$,	$2 \leq p<3$,		and p rational．
9）+ －－－		$-3 \leq p \leq 3$,		and p real．
10）+--+		$-3 \leq p \leq 3$,		and p rational．
11）+-+		$-3 \leq p<3$,		and p real．
12）+-++		$-3 \leq p<3$,		and p rational．
13）++		$-3<p \leq 3$,		and p real．
14）+ ＋－＋		$-3<p \leq 3$,		and p rational．
15）+++-		$-3<p<3$,		and p real．
16）++++		$-3<p<3$,		and p rational

A definition of $<$ requires that whenever we are given two numbers of our set $p_{1} p_{2}$ we have a criterion whereby we can tell whether the relation $p_{1}<p_{2}$ holds or does not hold． In all the eight definitions of $<$ the relation holds for any pair of numbers $p_{1} p_{2}$ if it holds in the case of ordinary linear order，
1^{\prime} ） I II III except $0 \nless 1,-1<-2,0<-1$ and $0<-2$ ．
$\left.2^{\prime}\right)-$＋except $1<-1,1<0,0<-1, p_{1}<-1, p_{1}<0, p_{1}<1$ ， $-1 \nless p_{2}, 0 \nless p_{2}$ and $1 \nless p_{2} ; p_{1} \neq-1,0,1 ; p_{2} \neq-1$ ， 0,1 ．
$\left.3^{\prime}\right)-+-$ except $0<-m / 2^{n}, n$ positive integer and m odd positive integer．
$\left.4^{\prime}\right)-++$ except $p_{1}<-1, p_{1}<0, p_{1}<1,-1 \nless p_{2}, 0 \nless p_{2}$ ，and $1 \nleftarrow p_{2} ; p_{1} \neq 3 ; p_{2} \neq-1,0,1$ ．
$\left.5^{\prime}\right)+$－and $p_{2}-p_{1}<1 / 3$ ．
$\left.6^{\prime}\right)+-+$ and $p_{2}-p_{1}=m / 2^{n}, n$ positive integer and m odd integer．
$\left.7^{\prime}\right)++-$ except $0<-m / 2^{n}$ and $-m / 2^{n} \varangle 0, n$ positive integer and m odd positive integer．
$\left.8^{\prime}\right)+++$ with no exceptions．
To illustrate：The independence example where postulates II，III，V，and VII hold and postulates I，IV and VI do not hold $\left(-++ー+ー+\right.$ ）is definition 4^{\prime} used on set 6.

University of Nebraska．

[^0]: * The linear order η is an ordered set equivalent to that of all the rational numbers.
 \dagger "Sets of completely independent postulates for serial order." This Bulletin, March, 1917. This paper contains a bibliography of complete independence.

