A SET OF COMPLETELY INDEPENDENT POSTULATES FOR THE LINEAR ORDER η^* .

BY PROFESSOR M. G. GABA.

(Read before the American Mathematical Society September 4, 1919.)

Professor E. V. Huntington has published† three sets of completely independent postulates for serial order. His set A involves four postulates, which is as high a number of postulates as had been proved completely independent. In the present paper are given seven postulates which form a categorical and completely independent set for the linear order.

Our basis is a class of elements [p] and an undefined dyadic relation (called 'less than') among the elements. If we are given two elements p_1p_2 and if the relation p_1 less than p_2 holds, we will symbolize it by $p_1 < p_2$. If the relation p_1 less than p_2 does not hold, we will symbolize it by $p_1 < p_2$.

Our postulates are:

I. If $p_1 < p_2$, then $p_2 < p_1$.

II. If $p_1 \lessdot p_2$, then $p_2 \lessdot p_1$; p_1 , p_2 distinct.

III. If $p_1 < p_2$ and $p_2 < p_3$, then $p_1 < p_3$.

IV. If $p_1 < p_2$, then there exists a p_3 such that $p_1 < p_3$ and $p_3 < p_2$.

V. For every p_1 there exists a p_2 such that $p_2 < p_1$.

VI. For every p_1 there exists a p_2 such that $p_1 < p_2$.

VII. The class of elements [p] form a denumerable set.

That the set is categorical follows from the fact that the seven postulates stated are the necessary and sufficient conditions for the linear order η . To show complete independence it will be necessary to cite 128 (2⁷) examples showing all possible combinations ($\pm \pm \pm \pm \pm \pm \pm$) of our postulates holding and not holding. This is done by giving eight definitions of <, and sixteen sets of points such that each definition is applicable to every one of the sets, and every combination

^{*} The linear order η is an ordered set equivalent to that of all the rational numbers.

 $[\]dagger$ "Sets of completely independent postulates for serial order." This Bulletin, March, 1917. This paper contains a bibliography of complete independence.

of definition of < and set yields a different example. The eight definitions give the eight $(\pm\pm\pm)$ groups of cases for the implicational postulates I, II and III, whereas each of the sixteen sets gives all the eight cases where any particular set $(\pm\pm\pm\pm)$ of the existential postulates IV, V, VI and VII hold or do not hold.

For the independence examples, the set [p] consists of points on a line such that

A definition of < requires that whenever we are given two numbers of our set p_1p_2 we have a criterion whereby we can tell whether the relation $p_1 < p_2$ holds or does not hold. In all the eight definitions of < the relation holds for any pair of numbers p_1p_2 if it holds in the case of ordinary linear order.

```
1 II III

1' - - - except 0 < 1, -1 < -2, 0 < -1 and 0 < -2.

2') - - + except 1 < -1, 1 < 0, 0 < -1, p_1 < -1, p_1 < 0, p_1 < 1, -1 < p_2, 0 < p_2 and <math>1 < p_2; p_1 \neq -1, 0, 1; p_2 \neq -1, 0, 1.

3') - + - except 0 < -m/2^n, n positive integer and m odd positive integer.

4') - + + except p_1 < -1, p_1 < 0, p_1 < 1, -1 < p_2, 0 < p_2, and <math>1 < p_2; p_1 \neq 3; p_2 \neq -1, 0, 1.

5') + - - and p_2 - p_1 < 1/3.

6') + - + and p_2 - p_1 = m/2^n, n positive integer and m odd integer.

7') + - except 0 < -m/2^n and -m/2^n < 0, n positive integer and m odd positive integer.

8') + + with no exceptions.
```

To illustrate: The independence example where postulates II, III, V, and VII hold and postulates I, IV and VI do not hold (-++-+-+) is definition 4' used on set 6.

University of Nebraska.