INFINITE SYSTEMS OF FUNCTIONS.

by PROFESSOR W. E. MILNE.

The study of infinite systems of functions is approached in this paper from an elementary point of view, and by easy steps there are derived results of considerable generality. It is found that every enumerable system of real functions whose squares are integrable in the sense of Lebesgue either is orthogonal, or possesses an adjoint, or is essentially linearly dependent. Corresponding to every normalized system of functions $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots$, is a set of constants $\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots$, where $1 \geqq \lambda_{i} \geqq 0$ for every i, with the properties:

A necessary and sufficient condition that the system
(a) be orthogonal is that $\lambda_{i}=1$ for every i,
(b) possess an adjoint is that $\lambda_{i}>0$ for every i,
(c) be essentially linearly dependent is that $\lambda_{i}=0$ for some i.
§ 1.
For simplicity the discussion is limited to real functions of a single real variable.* The symbol Ω denotes the class of all such functions whose squares are integrable in the sense of Lebesgue in the interval (a, b). Functions of Ω, as well as sums and products of such functions are integrable in (a, b). The word "function" in this paper will always mean a function of class Ω, and all properties stated of a system of class Ω will be understood to hold throughout the interval (a, b). It is assumed that the reader is familiar with the terms norm of a function, normalized system, orthogonal system, biorthogonal systems, complete systems, essential linear dependence (of a finite number of functions), convergence in the mean, etc. \dagger

§ 2.

Let there be given an enumerable system [φ] of normalized functions $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots$, of class Ω. First we investigate the

[^0]dependence of a finite set of these functions $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$, denoted by $[\varphi]^{(n)}$, and look not merely for a test to distinguish between essential linear dependence and independence, but for a measure of the independence, or of the nearness to dependence. To formulate this precisely we assume that $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$ are independent and ask how nearly can any given function φ_{i} of the set be expressed linearly in terms of the remaining functions of $[\varphi]^{n}$, where the nearness is measured by the integral of the square of the remainder. Then write
\[

$$
\begin{equation*}
\xi_{i}^{(n)}=\varphi_{i}-\left(c_{1} \varphi_{1}+\cdots+c_{n} \varphi_{n}\right) \tag{1}
\end{equation*}
$$

\]

in which $c_{i}=0$ and the remaining c 's are chosen to minimize the norm

$$
\begin{equation*}
\int_{a}^{b}\left[\xi_{i}^{(n)}\right]^{2} d x=\lambda_{i}^{(n)} \tag{2}
\end{equation*}
$$

When the c 's are determined in the usual manner* and substituted into (1) the result may be put in the form \dagger

$$
\xi_{i}{ }^{(n)}=\frac{1}{G_{i}{ }^{(n)}}\left|\begin{array}{cccc}
1 & \int \varphi_{1} \varphi_{2} & \cdots & \int \varphi_{1} \varphi_{n} \tag{3}\\
\int \varphi_{1} \varphi_{2} & 1 & \cdots & \int \varphi_{2} \varphi_{n} \\
\cdots & \cdots & \cdots & \cdots \\
\varphi_{1} & \varphi_{2} & \cdots & \varphi_{n} \\
\cdots & \cdots & \cdots & \cdots \\
\int \varphi_{1} \varphi_{n} & \int \varphi_{2} \varphi_{n} & \cdots & 1
\end{array}\right|
$$

in which $G_{i}{ }^{(n)}$ denotes the gramian of $[\varphi]^{(n)}$ with φ_{i} omitted, and in which the non-integrated terms $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$ occupy the i th row of the determinant.

This set of functions $\xi_{i}{ }^{(n)}$ has a number of interesting properties. For from equation (3) it is readily seen that

$$
\begin{equation*}
\int_{a}^{b} \varphi_{i} \xi_{j}^{(n)} d x=0 \tag{4}
\end{equation*}
$$

if i is not equal to j, while

$$
\begin{equation*}
\int_{a}^{b} \varphi_{i} \xi_{i}^{(n)} d x=\frac{G^{(n)}}{G_{i}^{(n)}}, \tag{5}
\end{equation*}
$$

[^1]in which $G^{(n)}$ denotes the gramian of the system [$\left.\varphi\right]^{n}$. From (2), (3), and (5) we find
\[

$$
\begin{equation*}
\lambda_{i}^{(n)}=\int_{a}^{b}\left[\xi_{i}^{(n)}\right]^{2} d x=\frac{G^{(n)}}{G_{i}^{(n)}} . \tag{6}
\end{equation*}
$$

\]

From (5) and (6) follows

$$
\begin{equation*}
\int_{a}^{b} \varphi_{i} \xi_{i}^{(n)} d x=\lambda_{i}^{(n)} \tag{7}
\end{equation*}
$$

From (3), (4), and (7) we also get

$$
\begin{equation*}
\int_{a}^{b} \xi_{i}^{(m) \xi_{i}^{(n)}} d x=\lambda_{i}^{(n)} \quad(m<n) . \tag{8}
\end{equation*}
$$

From (6) and (8) we have finally

$$
\begin{equation*}
\int_{a}^{b}\left[\xi_{i}^{(m)}-\xi_{i}^{(n)}\right]^{2} d x=\lambda_{i}^{(m)}-\lambda_{i}^{(n)} \quad(m<n) . \tag{9}
\end{equation*}
$$

§ 3.
So far it has been assumed that the functions of $[\varphi]^{(n)}$ are essentially linearly independent. If that is not the case, the right hand sides of equations (3), (5), and (6) may become indeterminate through the vanishing of both numerator and denominator. But the $\xi_{i}{ }^{(n)}$ and $\lambda_{i}{ }^{(n)}$ are still determinate. For if the function $\varphi_{m}(m<n)$ is expressible linearly in terms of the functions of $[\varphi]^{(n)}$ with φ_{m} and φ_{i} omitted, the value of $\lambda_{i}{ }^{(n)}$ is obviously unchanged if φ_{m} be dropped from the set. Therefore in forming equations (3) and (5) we shall omit every function φ_{m} which is expressible linearly in terms of the functions (excepting φ_{i}) which precede φ_{m} in the system [φ]. Then equations (3) to (9) hold without exception. It is evident that a necessary and sufficient condition for essential linear dependence of $[\varphi]^{(n)}$ is $\lambda_{i}^{(n)}=0$ for some i.
§ 4.
Consider now the case of an infinite system of functions. From (9) it is apparent that

$$
\begin{equation*}
\lambda_{i}{ }^{(m)} \geqq \lambda_{i}{ }^{(n)} \quad \text { if } m<n . \tag{10}
\end{equation*}
$$

This relation, together with the fact that the λ 's are never negative, insures the convergence of $\lambda_{i}{ }^{(n)}$ for each i as n
becomes infinite,
where

$$
\begin{equation*}
\lim _{n \dot{\infty}} \lambda_{i}^{(n)}=\lambda_{i} \quad(i=1,2, \cdots) \tag{11}
\end{equation*}
$$

$$
1 \geqq \lambda_{i} \geqq 0 \quad(i=1,2, \cdots)
$$

Recall now the following theorem of Fischer. A necessary and sufficient condition that a sequence of functions $\theta_{1}, \theta_{2}, \theta_{3}$, \cdots of class Ω converge in the mean to a function of this class is that to every positive ϵ however small there correspond a number N such that $\int_{a}^{b}\left[\theta_{m}-\theta_{n}\right]^{2} d x<\epsilon$ whenever m and $n>N$.* Since $\lambda_{i}{ }^{(n)}$ converges we see from (9) that the condition for mean convergence is satisfied for the sequence of functions $\xi_{i}{ }^{(n)}$ when i is held fast and n becomes infinite. Therefore $\xi_{i}{ }^{(n)}$ converges in the mean to a function ξ_{i} of class Ω. This system of functions $\left[\xi_{i}\right]$ has the property that

$$
\int_{a}^{b} \varphi_{i} \xi_{j} d x= \begin{cases}\lambda_{i} & \text { if } i=j \tag{12}\\ 0 & \text { if } i \neq j\end{cases}
$$

For, by Schwarz's inequality,

$$
\left[\int_{a}^{b} \varphi_{i}\left(\xi_{j}^{(n)}-\xi_{j}\right) d x\right]^{2} \leqq \int_{a}^{b}\left(\xi_{j}^{(n)}-\xi_{j}\right)^{2} d x
$$

since φ_{i} is normalized. Since the right-hand side approaches zero as n becomes infinite we have

$$
\int_{a}^{b} \varphi_{i} \xi_{j} d x=\lim _{n=\infty} \int_{a}^{b} \varphi_{i} \xi_{j}^{(n)} d x
$$

from which, by (4), (7), and (11), we obtain (12).

§ 5.

Suppose that the system [φ] is orthogonal. Then every gramian is unity, hence by (6) every $\lambda_{i}{ }^{(n)}$ is unity, and therefore every λ_{i} is unity. Conversely, if every λ_{i} is unity, it follows from (10) that every $\lambda_{i}{ }^{(n)}$ is unity, and in particular $\lambda_{1}{ }^{(2)}=1$. But this can be true only if

$$
\left|\begin{array}{cc}
1 & \int \varphi_{1} \varphi_{2} \\
\int \varphi_{1} \varphi_{2} & 1
\end{array}\right|=1
$$

[^2]from which we find that
$$
\int_{a}^{b} \varphi_{1} \varphi_{2} d x=0
$$

Now any two functions of the system may be placed first, and therefore the system must be orthogonal. Therefore we have

Theorem I. A necessary and sufficient condition that a normalized system $\left[\varphi\right.$] be orthogonal is that $\lambda_{i}=1$ for every i.

Suppose next that $[\varphi]$ has an adjoint system $[\psi]$. For sake of symmetry we shall assume that $[\psi]$ is normalized, which requires a slight change in the usual definition of an adjoint system, for we simply require that the integral $\int_{a}^{b} \varphi_{i} \psi_{i} d x$ be greater than zero instead of requiring it to be unity. Now multiply equation (3) by ψ_{i} and integrate. The result is

$$
\int_{a}^{b} \psi_{i} \xi_{i}{ }^{(n)} d x=\int_{a}^{b} \varphi_{i} \psi_{i} d x
$$

Hence, by Schwarz's inequality,

$$
\left[\int_{a}^{b} \varphi_{i} \psi_{i} d x\right]^{2} \leqq\left[\int_{a}^{b} \psi_{i}{ }^{2} d x\right]\left[\int_{a}^{b} \xi_{i}{ }^{(n) 2} d x\right]
$$

from which it follows that

$$
\left[\int_{a}^{b} \varphi_{i} \psi_{i} d x\right]^{2} \leqq \lambda_{i}^{(n)}
$$

for every value of i. Therefore $\lambda_{i}>0$ for every i. Conversely if $\lambda_{i}>0$ for every i the system [ψ] defined by the equations

$$
\begin{equation*}
\psi_{i}=\xi_{i} / \sqrt{\lambda_{i}} \quad(i=1,2, \cdots) \tag{13}
\end{equation*}
$$

is a normalized system adjoint to [φ], as we see from (2) and (12). This proves

Theorem II. A necessary and sufficient condition that a normalized system $[\varphi]$ have an adjoint is that $\lambda_{i}>0$ for every i.

It is of interest to construct the functions ζ_{i} and the numbers μ_{i} which bear to the system $[\psi]$ defined in (13) the same relations respectively that ξ_{i} and λ_{i} bear to [φ]. It is found
upon carrying through the computations that

$$
\zeta_{i}=\varphi_{i} \sqrt{\lambda_{i}}
$$

and

$$
\mu_{i}=\lambda_{i},
$$

as might have been expected from considerations of symmetry.
Another interesting property of the adjoint defined above is that of all normalized systems $[\psi]$ adjoint to $[\varphi]$ none gives greater value to the integrals $\int_{a}^{b} \varphi_{i} \psi_{i} d x$ than does the system defined by (13). For any adjoint whatever gives

$$
\left[\int_{a}^{b} \varphi_{i} \psi_{i} d x\right]^{2} \leqq \lambda_{i}
$$

but the adjoint defined by (13) requires the equality sign only.
Definition: A function θ is said to be expressible linearly in terms of a system [φ] if there exists a sequence of linear combinations of φ 's converging in the mean to θ. It is evident that the functions ψ_{i} defined by (13) are all expressible linearly in terms of [φ].

Consider a system $\varphi_{0}, \varphi_{1}, \varphi_{2}, \cdots$, where φ_{0} is any function of Ω and the system $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots$ is complete. Form the function ξ_{0}. By (12) ξ_{0} will be orthogonal to $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots$, but as this system is complete ξ_{0} must be essentially zero. From the definition of $\xi_{0}{ }^{(n)}$ in (1) it follows that φ_{0} must be expressible linearly in terms of $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots$. This gives a theorem almost identical with one proved by Brand.*

Theorem III. If a system [φ] is complete, every function of class Ω is expressible linearly in terms of $[\varphi]$.

Definition: If any function φ_{i} of a system [φ] is expressible linearly in terms of the remaining functions of the system, then [φ] is said to be essentially linearly dependent.

If any λ_{i} is zero it is apparent that the system is essentially linearly dependent. On the other hand if the system is dependent, and φ_{i} is therefore expressible in terms of the remaining functions, the number λ_{i} must be zero. For if it were equal to $\epsilon>0$, we could select a linear combination Σ_{i}, for which

$$
\int_{a}^{b}\left[\varphi_{i}-\Sigma_{i}\right]^{2} d x<\epsilon
$$

[^3]Then we may take n so great that $\xi_{i}{ }^{(n)}$ contains every function in Σ_{i}, and then, since $\lambda_{i}{ }^{(n)}$ is the least norm, we must have $\lambda_{i}{ }^{(n)}<\epsilon$, and consequently $\lambda_{i}<\epsilon$. Hence

Theorem IV. A necessary and sufficient condition that a normalized system $[\varphi]$ be essentially linearly dependent is that $\lambda_{i}=0$ for some i.

Theorems II and IV give
Theorem V. A necessary and sufficient condition that a system [φ] have an adjoint is that it be essentially linearly independent.

The University of Oregon, November, 1919.

ON CERTAIN RELATED FUNCTIONAL EQUATIONS.

BY DR. W. HAROLD WILSON.

(Read before the American Mathematical Society December 27, 1917.)

§ 1. Introduction.

This paper treats of the relationships which exist between certain functional equations. In § 2 , the equations

$$
\begin{equation*}
S(x-y)=S(x) C(y)-C(x) S(y), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
C(x-y)=C(x) C(y)-k^{2} S(x) S(y) \tag{2}
\end{equation*}
$$

are considered individually and as a system. It is shown that (1) and (2) have their solutions in common if $C(x)$ is an even function and $S(x) \neq 0$. As a consequence, it is shown that if $k \neq 0$, then
$S(x)=[F(x)-F(-x)] / 2 k$, and $C(x)=[F(x)+F(-x)] / 2$, where $F(x+y)=F(x) F(y) . \quad$ If $k=0$ and $S(x) \equiv 0, C(x) \equiv 1$ and

$$
S(x+y)=S(x)+S(y) .
$$

The work at this point is very closely allied to that of

[^0]: * The reader will see that the methods may be extended to more general systems.
 \dagger Definitions of all these terms are given by Brand "On infinite systems of linear integral equations," Annals of Math., vol. 14 (1913), p. 101.

[^1]: * See, e.g., Gram, "Uber die Entwickelung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadrate," Crelle, vol. 94 (1883), pp. 41-73. Byerly, "Approximate representation," Annals of Math., vol. 12 (1911), pp. 128-148. Bôcher, "Introduction to the theory of Fourier's series," Annals of Math., vol. 7 (1905), p. 81. Brand, loc. cit.
 \dagger As usual, $\int \varphi_{i} \varphi_{j}$ stands for $\int_{a}^{b} \varphi_{i} \varphi_{j} d x$.

[^2]: *Fischer, "Sur la convergence en moyenne," Comptes Rendus, May 1907, p. 1022.

[^3]: * Loc. cit., Theorem 12.

