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3. Solution of equations satisfying the Lipschitz condition 
by the method of successive approximations. 

4. Properties of the solutions. 
5. Extension of the solution to a boundary of the region for 

which the equations are defined. 
6. Solution by the Cauchy-Lipschitz method. 
7. Solutions of infinite systems of linear differential equa­

tions having constant coefficients. 
8. Solutions of infinite systems of linear differential equa­

tions having periodic coefficients. 

LECTURE V. APPLICATIONS OF FUNCTIONS OF INFINITELY 

MANY VARIABLES. 

1. Hill's problem of the motion of the lunar perigee. 
2. Solutions of linear differential equations in the vicinity 

of singular points. 
3. The determination of the moon's variational orbit. 
4. Determination of periodic solutions of certain finite 

systems of differential equations. 
5. The dynamics of a certain type of infinite universe. 

At the close of the colloquium, Professor E. B. Van Vleck 
expressed the appreciation of those present for the excellence 
of the lectures, and tendered the thanks of the American 
Mathematical Society to the University of Chicago for the 
generous provision it had made for the colloquium, and for 
the welfare of the participants. An appropriate reply was 
made by Professor E. H. Moore. 

W. A. HURWITZ. 

NOTE ON VELOCITY SYSTEMS IN CURVED 
SPACE OF N DIMENSIONS. 

BY PROFESSOR JOSEPH LIPKA. 

(Read before the American Mathematical Society April 24, 1920.) 

§ 1. Introduction. 

I N a previous paper,* the author gave a complete geometric 
characterization of the families of curves (termed natural 

* "Natural families of curves in a general curved space of ndimensions," 
Trans. Amer. Math. Society, vol. 13 (1912), pp. 77-95. We shall hereafter 
refer to this paper as "Natural families." 
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families) defined as the extremals connected with variation 
problems of the form 

(1) J*Fds = minimum, 

where F is any point function and ds is the element of arc in 
the space considered. Such a system consists of oo2^-1) 
curves, one through each point in each direction. Among the 
dynamical systems whose determination leads to an integral 
of this form we may mention: (1) the trajectories in a con­
servative field of force for a given constant of energy h, 
where F = 'SW + h, W being the work function (negative 
potential) ; (2) the brachistochrones under conservative forces, 
F — 1/^W+ h; (3) the forms of equilibrium of a homo­
geneous, flexible, inextensible string acted on by conservative 
forces (general catenaries), F = W + h; the paths of light 
in an isotropic medium, F = v, the variable index of refraction. 

The complete characteristic geometrical properties of a 
natural family in any curved space, Vn, are:* 

(Ai) The locus of the centers of geodesic curvature of the 
oo n~1 curves which pass through any point of Vn is a euclidean 
space of n — 1 dimensions (£n_i). 

(A2) The osculating geodesic surfaces (PVs) at any point 
of Vn form a bundle of surfaces, i.e., all contain a fixed direc­
tion (and hence the geodesic in that direction) which is 
normal to the Sn-i of property A\. 

(B) The n directions at any point of Vn, in which, as a 
consequence of property A (i.e., A\ and A%), the osculating 
geodesic circles (circles of constant geodesic curvature) 
hyperosculate the curves of the given family, are mutually 
orthogonal. 

Now, property A alone completely characterizes a much 
wider class of curves, designated as a velocity system.f We 
have pointed out several dynamical problems which lead to a 
system of curves characterized by properties A and B. It is 
the purpose of this note to point out a dynamical problem 
which leads to the more general system of curves characterized 
by property A alone.J 

* "Natural families," p. 78. 
t This was designated as a system of type (G) in "Natural families," 

pp. 85-86. 
t Bee the discussion of the problem for a euclidean space of 3 dimensions 

by E. Kasner, Princeton Colloquium Lectures, p. 42. 
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§ 2. Differential Equations of Velocity Systems. 

Let us express our problem analytically. If the element 
of arc length in a general curved space Vn is given by* 

(2) ds2 = Ylaikdxidxk 
ik 

and we use s as the parameter along our curves, the differ­
ential equations of any natural system (characterized by 
properties A and B) aref 

(3) * " + z {Y} **v - ç dJ^p{Aii ~x/x/) 

(i = 1, 2, •••, n) , 

where ^4^ denotes the minor of a»j in the determinant a = | aA/A | 
divided by a itself, and we have used the Christoffel symbols 

i 

L i j 2\dx^ dx* dxt J ' 

On the other hand, the differential equations of a velocity 
system (characterized by property A) arej 

(5) xi' + Z f Y1 **V = 5>i0*« - *<'*i') 
Aft l M * 

(i = 1, 2, •••, n), 
where the 0's are arbitrary point functions. This system 
will reduce to a natural system if 

rx\ * d(logff) n i o N 
(6) cl>l = ~~dx— (Z= 1, 2, •••, n), 

i.e., the </>'s are the partial derivatives with respect to x of a 
single function. This is the analytic equivalent of property B. 

* We write only 2»* and understand that the summation is to be carried 
out from 1 to n for each of the indicated subscripts, 

t " Natural families," p. 80. Throughout this paper, primes refer to 
total derivatives with respect to arc length s, while dots refer to total 
derivatives with respect to time t. 

t " Natural families," p. 85. 
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§ 3. Dynamical Interpretation of Velocity System. 
Let us consider the motion of a particle in a curved n-space 

Vn under any positional forces. We start with the Lagrangian 
equations of motion,* 

(7) 
d (dT\ dT 

where T is the kinetic energy, given by 

(8) T = %52aikXiXk, 
ik 

and the X's are the components of force given as functions of 
the coordinates xi, x2, • • •, xn. Equations (7) may be ex­
panded as 

Xl = dt\^aikXk) ~ 2^dx^ XiXk> 

Z „ , y» da ik . . __ 1. y> dago . . 
Q>ik%k i 2LJ « ^ x%Xk D 2^ *\^ XiXif 

k ik OXi A ik OX i 

* <* L l J 

Multiplying by Ami, summing with respect to I, and em­
ploying 

V A f 0, if fc =H 1 

i (m = 1, 2, •••, n). 

(9) 

we get 

(10) i + E L &** ^ Z^mzZ 

These equations give us the components of acceleration along 
a curve as functions of the coordinates and the components 
of velocity. 

Since the velocity along the curve is given by 

(11) s2 = J^aikXiXk, 
ik 

we may, by differentiation, get the acceleration along the 
path; thus 

* See E . T . Whittaker, Analytical Dynamics, p . 39. 
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\~^ . . . i 1 \r^ oQ>ik . . . 
SS = 2u CtikXiXjc + Ô 2w ^ XiXkXr 

ik Z ijcr OXr 

= ]£a**i*( J^AkiXi — J2\ h 1***0 ) + Ö T Z " ^ XiXkxr 

- V • v v T ^ l - • • I I v ^ L a • • • 
I iafi L ^ J ^ iaj8 <?#£ 

the reductions being accomplished by using (4) and (9). 
As a first step in getting the differential equations of the 

trajectories, we have 

f Xm ^ lf SXm Xm$ 
xm — — > Xm •— 73 ; 

and using (10) and (12), we get 

Xm = = "Tjj / j dim lX 1 "~" x < J [ X% Xfc T̂  Xm x J X \ 'Xu 
0 1 ik [ ill J o 1 

or 

(13) xm" + ]C 1 ^ a/a*' = 72 Z -XTiĈU»! - Bm'ai') 

( m = 1, 2 , • • • , ra). 

To get the differential equations of the trajectories we should 
have to eliminate the speed è; this would lead to a set of 
equations of the third order representing oo2"-1 curves. But, 
for our purpose, we need not go any further. Equations (13) 
hold for any trajectory, and along this the speed s varies 
from point to point. Now if in (13) we replace 1/s2 by a 
constant c, we get 

(14 ) Xm" + Z ) 1 L \xi'Xk' = C'J^Xi(Aml - Xm'x/) 
He [ Wl> J I 

(m= 1,2, • • , n), 

a set of differential equations of the second order representing a 
system of oo2^-1) curves (called a velocity system) one 
through each point in each direction. This system may 
therefore be defined dynamically as follows: 
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A curve is a velocity curve corresponding to the speed è0 if 
a particle starting from a point of such a curve and in the direc­
tion of the curve and with that speed describes a trajectory oscu­
lating the curve. 

Now, we note that equations (14) are, with a change in 
subscripts, exactly equations (5), where 

(15) <t>i = cXx = \xx (I = 1, 2, • • -, n). 
s 

We have thus formulated a dynamical problem which leads 
to the system of curves (called a velocity system) characterized 
geometrically by property A. For each constant value as­
signed to the speed s, we get a velocity system, and the 
totality of oo1 systems obtained by varying s constitute a 
complete velocity system of oo271-1 curves in Vn. 

§ 4. Velocity Systems and Natural Systems. 

Velocity systems are not in general systems of trajectories, 
brachistochrones, or catenaries, but if the field of force is 
conservative, then 
(16) Z z = = t o 7 (*=1,2, -. . ,n), 

where W\ is the work function defining the field, and, as 
pointed out in § 2, the velocity system corresponding to a 
speed éo becomes a natural system defined by equation (1) 
or by the point function F, where by (6) 

açiog F) 

and by (15) 
dWx 3(Iog F) 
dxi dxi ' 

hence 

(17) F = ew^ 

On the other hand, in a conservative field of force with 
work function W2 and given constant of energy h, the natural 
system defined by equation (1) or by the point function F is a 
system of 
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trajectories, if F = AW2 + h, 

(18) brachistochrones, if F = 1/^W2 + h 

catenaries, if F ~ W2 + h. 

By comparison of (17) and (18), we may now state: 
A velocity system for the speed s0 in a conservative field with 

work function Wx is a system of (1) trajectories, (2) brachisto­
chrones, (3) catenaries for the constant of energy h in a conserva­
tive field with work function W2i where 

(1) W2 = e2W^ - A, (2) W2 = *-<**/•>> - A, 

(3) TF2 = ^<>2 - h. 

Since PFi = constant gives W2 = constant, the two fields 
have the same equipotential hypersurfaces and the same 
lines of force. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 
February, 1920. 

AUGUSTUS DE MORGAN ON DIVERGENT SERIES. 

BY PROFESSOK FLORIAN CAJORI. 

(Read before the San Francisco Section of the American Mathematical 
Society April 10, 1920.) 

SEVERAL English mathematicians writing in the second 
quarter of the nineteenth century disapproved of the banish­
ment of divergent series which had been brought about by 
the followers of A. L. Cauchy and N. H. Abel. These protests 
were unheeded, doubtless because they were not accompanied 
by indications disclosing how divergent series could be used 
with safety. There was one exception, however: Augustus 
De Morgan reached results which, had they been followed up 
promptly, might have re-introduced divergent series thirty 
years earlier than was actually the case. De Morgan's re­
searches have been overlooked in historical statements, except 
by H. Burkhardt,* who, however, missed the parts of De 
Morgan which foreshadow a new theory. 

* H. Burkhardt "Ueber den Gebrauch divergenter Reihen in der Zeit 
von 1750-1860," Math. Annalen, vol. 70 (1911), pp. 169-206. This 
-article contains much minute information regarding many writers. 


