1920.]

ON IMPLICIT FUNCTIONS.

BY MR. F. H. MURRAY.

METHODS of solving a system of m equations in n > mvariables, by reducing the problem to that of solving a set of differential equations, have already been given;^{*} the aim of this paper is to present a method by which the system of mequations can be reduced immediately to a system of mdifferential equations of the first order, from which reduction the existence theorem and a method of constructing the solutions follow directly. For simplicity the case of two equations in four variables will be treated.

§ 1. Reduction to a System of Differential Equations.

It is required to solve the system

(1)
$$f_1(x, y, u, v) = 0, f_2(x, y, u, v) = 0$$

in the neighborhood of a set of values (x_0, y_0, u_0, v_0) for which

$$f_1(x_0, y_0, u_0, v_0) = 0, \quad f_2(x_0, y_0, u_0, v_0) = 0.$$

There is no loss in generality in assuming $x_0 = y_0 = u_0 = v_0 = 0$; suppose x, y to be the independent, u, v the dependent variables. It will be assumed that all the first partial derivatives exist and are continuous in the neighborhood of the origin defined by the inequalities

(R)
$$\sqrt{x^2+y^2} \leq a, |u| \leq b, |v| \leq b.$$

Also, assume that the Jacobian

$$\Delta = \begin{vmatrix} \frac{\partial f_1}{\partial u} & \frac{\partial f_1}{\partial v} \\ \frac{\partial f_2}{\partial u} & \frac{\partial f_2}{\partial v} \end{vmatrix}$$

does not vanish at the origin (0, 0, 0, 0); consequently the constants a, b can be so chosen that $\Delta \neq 0$ in R. Introduce

^{*} Horn, Gewöhnliche Differentialgleichungen beliebiger Ordnung.

```
[Dec.,
```

polar coordinates:

 $x = r \cos \theta$, $y = r \sin \theta$.

Equations (1) become

(1') $f_1(r\cos\theta, r\sin\theta, u, v) = 0$, $f_2(r\cos\theta, r\sin\theta, u, v) = 0$.

If functions $u(r, \theta)$, $v(r, \theta)$, satisfying (1') can be found, such that $\frac{\partial u}{\partial r}$, $\frac{\partial v}{\partial r}$ are defined throughout the region R, we must have

(2)
$$\frac{\partial f_1}{\partial x} \cos \theta + \frac{\partial f_1}{\partial y} \sin \theta + \frac{\partial f_1}{\partial u} \frac{\partial u}{\partial r} + \frac{\partial f_1}{\partial v} \frac{\partial v}{\partial r} = 0,$$
$$\frac{\partial f_2}{\partial x} \cos \theta + \frac{\partial f_2}{\partial y} \sin \theta + \frac{\partial f_2}{\partial u} \frac{\partial u}{\partial r} + \frac{\partial f_2}{\partial v} \frac{\partial v}{\partial r} = 0.$$

Since $\Delta \neq 0$,

$$\frac{\partial u}{\partial r} = \frac{\begin{vmatrix} \frac{\partial f_1}{\partial v} & \frac{\partial f_1}{\partial x} \\ \frac{\partial f_2}{\partial v} & \frac{\partial f_2}{\partial x} \end{vmatrix} \cos \theta + \begin{vmatrix} \frac{\partial f_1}{\partial v} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial v} & \frac{\partial f_2}{\partial y} \end{vmatrix} \sin \theta \\ \frac{\partial f_1}{\partial r} = \frac{\begin{vmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_1}{\partial u} \end{vmatrix}}{\Delta} \cos \theta + \begin{vmatrix} \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial u} \\ \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial u} \end{vmatrix} \sin \theta \\ \frac{\partial f_2}{\partial r} = \frac{\begin{vmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial u} \end{vmatrix}}{\Delta} \cos \theta + \begin{vmatrix} \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial u} \end{vmatrix} \sin \theta \\ \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial u} \end{vmatrix} = 0,$$

In these equations consider θ as a parameter, u, v, r as the variables; equations (3) can be written in the form

(3')
$$\frac{du}{dr} = A(u, v, r), \quad \frac{dv}{dr} = B(u, v, r), \quad u(0) = v(0) = 0.$$

Suppose the original functions f_1 , f_2 such that for every θ , $0 < \theta \leq 2\pi$, there exist constants C, D if u', u'', v', v'', are in R, such that

(4)
$$|A(u'', v'', r) - A(u', v', r)| < C |u'' - u'| + D |v'' - v'|, |B(u'', v'', r) - B(u', v', r)| < C |u'' - u'| + D |v'' - v'|.$$

1920.]

§ 2. Final Solution.

Suppose that for u = v = 0, $r \leq h$, $|A| \leq M_0$, $|B| \leq M_0$; for u, v, r in R, $|A| \leq M$, $|B| \leq M$. Then from the existence theorem for ordinary differential equations,* if C + D = K, the equations (3') have solutions u, v if $0 \leq r \leq \delta$, where δ is the larger of the quantities δ_1, δ_2 ,

$$\delta_1 \leq a \leq rac{b}{M}, \quad \delta_2 \leq a \leq rac{1}{K} \log\left(1 + rac{bK}{M_0}\right).$$

The functions u, v satisfy (3'), hence have derivatives with respect to r.

Since A, B are periodic in θ , the constants C, D have upper limits independent of θ , consequently K, M_0 can be defined independent of θ ; the series defining u, v converge uniformly in θ , hence u, v are continuous functions of θ . The constant M can also be defined independent of θ , with the result that the solutions u, v are continuous functions of r, θ , and differentiable with respect to r, if $0 \leq r \leq \delta$.

Introduce these functions in (1'); since

$$\frac{\partial f_1}{\partial r} = \frac{\partial f_2}{\partial r} = 0, \quad f_1 = \phi_1(\theta), \quad f_2 = \phi_2(\theta).$$

But within the region $0 \leq r \leq \delta$, f_1 , f_2 are continuous functions of r, θ ; for r = 0, x = y = u = v = 0, consequently

$$\phi_1(\theta)=0, \quad \phi_2(\theta)=0.$$

These equations must hold for every θ , hence are identities, and equations (1') are identically satisfied. The functions u, v are the solutions required.

For *n* variables x_1, x_2, \dots, x_n ,

$$r = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}, \quad \cos \theta_i = x_i/r.$$

* Picard, Traité d'Analyse, 2, pp. 343, 345.