ON IMPLICIT FUNCTIONS.

BY MR. F. H. MURRAY.
Methods of solving a system of m equations in $n>m$ variables, by reducing the problem to that of solving a set of differential equations, have already been given;* the aim of this paper is to present a method by which the system of m equations can be reduced immediately to a system of m differential equations of the first order, from which reduction the existence theorem and a method of constructing the solutions follow directly. For simplicity the case of two equations in four variables will be treated.

§ 1. Reduction to a System of Differential Equations.

It is required to solve the system

$$
\begin{equation*}
f_{1}(x, y, u, v)=0, \quad f_{2}(x, y, u, v)=0 \tag{1}
\end{equation*}
$$

in the neighborhood of a set of values $\left(x_{0}, y_{0}, u_{0}, v_{0}\right)$ for which

$$
f_{1}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0, \quad f_{2}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0
$$

There is no loss in generality in assuming $x_{0}=y_{0}=u_{0}=v_{0}=0$; suppose x, y to be the independent, u, v the dependent variables. It will be assumed that all the first partial derivatives exist and are continuous in the neighborhood of the origin defined by the inequalities

$$
\begin{equation*}
\sqrt{x^{2}+y^{2}} \leqq a, \quad|u| \leqq b, \quad|v| \leqq b \tag{R}
\end{equation*}
$$

Also, assume that the Jacobian

$$
\Delta=\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial v} \\
\frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v}
\end{array}\right|
$$

does not vanish at the origin ($0,0,0,0$); consequently the constants a, b can be so chosen that $\Delta \neq 0$ in R. Introduce

[^0]polar coordinates:
$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Equations (1) become
(1') $f_{1}(r \cos \theta, r \sin \theta, u, v)=0, \quad f_{2}(r \cos \theta, r \sin \theta, u, v)=0$.
If functions $u(r, \theta), v(r, \theta)$, satisfying (1^{\prime}) can be found, such that $\partial u / \partial r, \partial v / \partial r$ are defined throughout the region R, we must have

$$
\begin{align*}
& \frac{\partial f_{1}}{\partial x} \cos \theta+\frac{\partial f_{1}}{\partial y} \sin \theta+\frac{\partial f_{1}}{\partial u} \frac{\partial u}{\partial r}+\frac{\partial f_{1}}{\partial v} \frac{\partial v}{\partial r}=0 \\
& \frac{\partial f_{2}}{\partial x} \cos \theta+\frac{\partial f_{2}}{\partial y} \sin \theta+\frac{\partial f_{2}}{\partial u} \frac{\partial u}{\partial r}+\frac{\partial f_{2}}{\partial v} \frac{\partial v}{\partial r}=0 \tag{2}
\end{align*}
$$

Since $\Delta \neq 0$,

$$
\begin{align*}
& \frac{\partial u}{\partial r}=\frac{\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial v} & \frac{\partial f_{1}}{\partial x} \\
\frac{\partial f_{2}}{\partial v} & \frac{\partial f_{2}}{\partial x}
\end{array}\right| \cos \theta+\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial v} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial v} & \frac{\partial f_{2}}{\partial y}
\end{array}\right| \sin \theta}{\Delta}, \quad u(0)=0 \\
& \frac{\partial v}{\partial r}=\frac{\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial u} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial u}
\end{array}\right| \cos \theta+\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial u} \\
\frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial u}
\end{array}\right| \sin \theta}{\Delta}, \quad v(0)=0 \tag{3}
\end{align*}
$$

In these equations consider θ as a parameter, u, v, r as the variables; equations (3) can be written in the form
(3') $\frac{d u}{d r}=A(u, v, r), \quad \frac{d v}{d r}=B(u, v, r), \quad u(0)=v(0)=0$.
Suppose the original functions f_{1}, f_{2} such that for every $\theta, 0<\theta \leqq 2 \pi$, there exist constants C, D if $u^{\prime}, u^{\prime \prime}, v^{\prime}, v^{\prime \prime}$, are in R, such that

$$
\begin{align*}
& \left|A\left(u^{\prime \prime}, v^{\prime \prime}, r\right)-A\left(u^{\prime}, v^{\prime}, r\right)\right|<C\left|u^{\prime \prime}-u^{\prime}\right|+D\left|v^{\prime \prime}-v^{\prime}\right| \\
& \left|B\left(u^{\prime \prime}, v^{\prime \prime}, r\right)-B\left(u^{\prime}, v^{\prime}, r\right)\right|<C\left|u^{\prime \prime}-u^{\prime}\right|+D\left|v^{\prime \prime}-v^{\prime}\right| \tag{4}
\end{align*}
$$

§ 2. Final Solution.

Suppose that for $u=v=0, r \leqq h,|A| \leqq M_{0},|B| \leqq M_{0}$; for u, v, r in $R,|A| \leqq M,|B| \leqq M$. Then from the existence theorem for ordinary differential equations,* if $C+D=K$, the equations (3^{\prime}) have solutions u, v if $0 \leqq r \leqq \delta$, where δ° is the larger of the quantities δ_{1}, δ_{2},

$$
\delta_{1} \leqq a \leqq \frac{b}{M}, \quad \delta_{2} \leqq a \leqq \frac{1}{K} \log \left(1+\frac{b K}{M_{0}}\right)
$$

The functions u, v satisfy (3^{\prime}), hence have derivatives with respect to r.

Since A, B are periodic in θ, the constants C, D have upper limits independent of θ, consequently K, M_{0} can be defined independent of θ; the series defining u, v converge uniformly in θ, hence u, v are continuous functions of θ. The constant M can also be defined independent of θ, with the result that the solutions u, v are continuous functions of r, θ, and differentiable with respect to r, if $0 \leqq r \leqq \delta$.

Introduce these functions in (1^{\prime}); since

$$
\frac{\partial f_{1}}{\partial r}=\frac{\partial f_{2}}{\partial r}=0, \quad f_{1}=\phi_{1}(\theta), \quad f_{2}=\phi_{2}(\theta)
$$

But within the region $0 \leqq r \leqq \delta, f_{1}, f_{2}$ are continuous functions of r, θ; for $r=0, x=y=u=v=0$, consequently

$$
\phi_{1}(\theta)=0, \quad \phi_{2}(\theta)=0
$$

These equations must hold for every θ, hence are identities, and equations (1^{\prime}) are identically satisfied. The functions u, v are the solutions required.

For n variables $x_{1}, x_{2}, \cdots, x_{n}$,

$$
r=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}, \quad \cos \theta_{i}=x_{i} / r
$$

[^1]
[^0]: * Horn, Gewöhnliche Differentialgleichungen beliebiger Ordnung.

[^1]: * Picard, Traité d'Analyse, 2, pp. 343, 345.

