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1. Introduction. A great part of the progress made in 
mathematical analysis during the last hundred years has been 
closely related, either logically or historically, to the study of 
Taylor's and Fourier's series. The power series is funda­
mental, or can be made fundamental, for the theory of func­
tions of complex variables, and the theory of functions of 
real variables has been elevated to its present dignity and 
scope largely by the successive additions made to meet the 
demands of the inquirer into the properties of trigonometric 
series.* 

One of the outlying portions of the structure is built around 
the problem of the approximate representation of an arbitrary 
function by means of polynomials or by means of finite 
trigonometric sums in general; that is, with the admission of 
coefficients other than those of a specified number of terms of 
a particular series. This theory, which has grown to its pres­
ent extent mainly within twenty years, forms the subject of 
the following report. I t can not be set off from the rest by any 
sharp line of demarcation, but there are certain well-marked 
processes of development which it is not difficult to trace. I t 
has seemed expedient for various reasons to make this paper 
an introduction to the literature of the subject, rather than 
an independent exposition of any considerable part of the 
theory. Even with this limitation, the treatment is merely 
illustrative, not in any sense exhaustive. 

2. Tchebychefs Theory and its Generalizations. Between 
1850 and 1860, Tchebychef f discussed the problem of de-

* Cf. Van Vleck, The influence of Fourier1 s series upon the development 
of mathematics, SCIENCE, vol. 39 (1914), pp . 113-124. 

t Tchebychef 1 (this form of reference will be adopted when there is 
occasion to cite more than one paper by the same author), Théorie des 
mécanismes connus sous le nom de parallélogrammes, MÉMOIKES PRÉSENTÉS 
À L ;ACADÉMIE IMPÉRIALE DES SCIENCES DE ST.-PÉTERSBOURG PAR DIVERS 
SAVANTS, vol. 7 (1854), pp. 539-568; Oeuvres, vol. 1, Petrograd, 1899, pp. 
111—143. 

Tchebychef 2, Sur les questions de minima qui se rattachent à la representor 
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termining a polynomial Pn(x), of given degree n, to approxi­
mate a given continuous function ƒ(#), in such a way that the 
maximum of the absolute value of the error, 

Max. \f(x)~Pn(x)\, 
shall be as small as possible. His reasoning, as recorded at 
that early date, was naturally incomplete, according to 
present standards. It was put into modern form by Kirch­
berger* in 1902. The idea was then rapidly carried further. 
It was applied by Frechetf and by J. W. YoungJ to problems 
of a considerably higher degree of generality, and in particu­
lar to representation by finite trigonometric sums, by Tonelli§ 
to functions of more than one variable (a phase already 
touched upon by Kirchberger and Fréchet), and by Sibirani|| 
to representation by linear combinations of a given set of 
linearly independent functions generally; and it has been ex­
tended in a variety of other ways. 

The most striking facts with regard to the Tchebychef 
polynomial of given degree n, for a given continuous function 
ƒ(#), in a given interval a =̂ x ^ 6, are that it is uniquely 
determined, and that the error f(x) — Pn(%) takes on its 
greatest numerical value not just once, but at least n + 2 
times, alternately with opposite signs. ̂ " When n — 0, for 
Hon approximative des fonctions, MÉMOIRES DE L'ACADÉMIE IMPÉRIALE DES 
SCIENCES DE ST.-PETERSBOURG, (6), SCIENCES MATHÉMATIQUES E T PHYS­
IQUES, vol. 7, (1859), pp. 199-291; Oeuvres, vol. 1, pp. 273-378. 

In preparing the present paper, I have consulted only the collected 
works, from which the citations of the original memoirs are quoted. 

* Kirchberger, Ueber Tchebychefsche Annaherungsmethoden, Disserta­
tion, Göttingen, 1902. See also Blichfeldt, Note on the functions of the 
form f(x) s <p(x) + a\Xn~x + a2x

n~2 + • • • + «n which in a given in­
terval differ the least possible from zero, TRANSACTIONS OF THE AMERICAN 
M A T H . SOCIETY, vol. 2 (1901), pp. 100-102. 

t Fréchet 1, Sur l'approximation des fonctions par des suites trigo-
nomêtriques limitées, COMPTES RENDUS, vol. 144 (1907), pp. 124-125; 
Fréchet 2, Sur Vapproximation des fonctions continues périodiques par les 
sommes trigonométriques limitées, ANNALES DE L'ECOLE NORMALE S U ­
PÉRIEURE, (3), vol. 25 (1908), pp. 43-56. 

% J. W. Young, General theory of approximation by functions involving 
a given number of arbitrary parameters, TRANSACTIONS OF THE AMERICAN 
M A T H . SOCIETY, vol. 8 (1907), pp. 331-344. 

§ Tonelli, J polinomi d'approssimazione di Tchébychev, ANNALI DI 
MATEMATICA, (3), vol. 15 (1908), pp. 47-119. 

| |Sibirani, Sulla rappresentazione approssimata délie funzioni, ANNALI 
DI MATEMATICA, (3), vol. 16 (1909), pp . 203-221. 

1f In the paper of 1854, the earliest reference to the subject with which 
I am acquainted, Tchebychef says (Oeuvres, vol. 1, p . 114): 

" Soit fx une fonction donnée, U un polynôme du degré n avec des coeffi­
cients arbitraires. Si Fon choisit ces coefficients de manière à ce que la 
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example, it is evident that the best constant is that midway 
between the greatest and least values of ƒ (a), so that the max­
imum deviation is reached at least twice, once positively and 
once negatively. A little experimentation with a ruler and 
a curve drawn on paper will leave little doubt as to the correct­
ness of the statement for n = 1, and perhaps will suggest 
at the same time the idea of the general proof. The latter, 
however, is by no means trivial, and it is a very satisfactory 
exercise in the application of elementary theorems of algebra 
and of the simplest principles of analysis. 

For the corresponding trigonometric problem, let it be 
supposed that fix) is of period 2 T , and is continuous for all real 
values of x. Among all expressions of the form 

Tn(x) = CLQ + a\ cos x + • • • + a>n cos nx 

+ &i sin x + • • • + bn sin nx, 

that is, among all finite trigonometric sums of order n, there 
will be one and just one for which the maximum of the 
quantity \f(x) — Tn(x) \ has the smallest possible value. This 
particular sum is characterized by the fact that the quantity 
fix) — Tn(x) reaches its greatest numerical value at least 
2 n + 2 times in a period, alternately with opposite signs. I t 
will be seen that the number 2n + 2 here, like the number 
n + 2 in the polynomial case, is one more than the number of 
arbitrary coefficients in question. 

Except for certain specific references in a later section, there 
is perhaps no occasion to dwell upon the subject longer here, 
since its main features are very readably presented in standard 
treatises.* The explicit determination of the approximating 
function, or of the degree of approximation attained, is ex­
traordinarily difficult, even in relatively simple cases, be­
cause the dependence of the approximating function on fix) 
is not linear. I t is especially noteworthy that the Tchebychef 

différence fx — U, depuis x — a — h, jusqu'à x = a + h, reste dans les 
limites les plus rapprochées de 0, la différence fx — U jouira, comme on le 
sait, de cette propriété: 

'Parmi les valeurs les plus grandes et les plus petites de la différence 
fx — U entre les limites x = a — h, x = a + h, on trouve au moins n + 2 
fois la même valeur numérique.' " 

The italics are mine. Kirchberger, op. cit., p. 6, states that the problem 
was originally proposed by Poncelet. 

* Cf., e.g., Borel, Leçons sur les Fonctions de Variables Réelles et les 
Développements en Séries de Polynômes, Paris, 1905, pp. 82-92; de la Vallée 
Poussin 1, Leçons sur VApproximation des Fonctions d}une Variable Réelle, 
Paris, 1919, see chapters 6, 7. 
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theory did not lead in any direct way to a recognition of the 
fundamental fact brought out in the next section, that there 
exist uniformly convergent processes of approximation by 
polynomials or by finite trigonometric sums, for an arbitrary 
continuous function f(x), although the approximating func­
tions of Tchebychef by definition yield the most rapidly 
convergent of all such processes. 

3. Weierstrass's Theorem. Let f(x) be an arbitrary con­
tinuous function over the interval a ^ x =S 6, and let e be an 
arbitrary positive quantity. Then there will always exist a 
polynomial P(x) such that \f(x) — P(x) \ < e throughout 
the interval. This theorem was first published by Weier­
strass* in 1885. Almost at the same time, and inde­
pendently of Weierstrass, Runge,f without formulating this 
particular conclusion, supplied the materials for a second 
proof, quite different in form. Other writers successively 
added other demonstrations, in great variety.J A time came 
when there was no longer any distinction in inventing a proof 
of Weierstrass's theorem, unless the new method could be 
shown to possess some specific excellence, in the way of 
simplicity, for example, or in rapidity of convergence. The 
question of degree of convergence will be the principal concern 
of the remainder of the paper. In respect to simplicity, 
mention may be made particularly of the proof of Lebesgue,§ 
which depends on the application of the binomial theorem to 
the representation of a function whose graph is a broken line, 
the proof of Landau, || which makes use of an especially con-

* Weierstrass 1, Über die analytische Darstellbarkeit sogenannter will-
kiirlicher Functionen einer reellen Verânderlichen, BERLINER SITZUNGS-
BERICHTE, 1885, pp. 633-639. 

t Runge, Über die Darstellung vdllkürlicher Functionen, ACTA MATHE­
MATICA, vol. 7 (1885), pp. 387-392, together with an earlier paper by the 
same author: Zur Theorie der eindeutigen analytischen Functionen, ACTA 
MATHEMATICA, vol. 6 (1885), pp . 229-244; pp. 236-237. The first-named 
paper deals with the approximation of an arbitrary continuous function by 
means of a rational function, while the other supplies the necessary facts 
about the approximate representation of rational functions by means of 
polynomials. 

t Cf., e.g., Borel, op. cit., pp . 50-61. 
§ Lebesgue 1, Sur Vapproximation des fonctions, BULLETIN DES SCIENCES 

MATHÉMATIQUES, (2), vol. 22 (1898), pp. 278-287; cf. de la Vallée Poussin 
1, pp. 3-5. 

|| Landau, Über die Approximation einer stetigen Funktion durch eine 
ganze rationale Funktion, RENDICONTI DEL CIRCOLO MATEMATICO DI 
PALERMO, vol. 25 (1908), pp. 337-345. 
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venient form of (so-called singular) definite integral, and 
Simon's modification* of Landau's proof, in which the definite 
integral is replaced by a finite sum. 

The trigonometric form of the theorem, to the effect that 
an arbitrary continuous function of period 2w can be uniformly 
represented by a finite trigonometric sum with any assigned 
degree of accuracy, was established by Weierstrass himself, 
not in the first paper already cited, but immediately after­
wards, f The polynomial and trigonometric cases are not 
only susceptible of parallel treatment, but are readily con­
vertible one into the other by a simple change of variable. 
Among the direct proofs for the trigonometric case may be 
mentioned, for simplicity and elegance, those of de la Vallée 
Poussin,J using a definite integral, and Kryloff,§ using the 
finite sum which corresponds to de la Vallée Poussin's in­
tegral. 

4. First Studies of Degree of Convergence. De la Vallée 
Poussin1 s Problem. It has long been known, in more or less 
detail, that there is a relation between the properties of con­
tinuity of a function and the degree of accuracy that can be 
attained in its approximate representation by specified means. 
For example, Picard, || in his Traité d'Analyse, points out in­
cidentally that if fix) is a function of period 2T possessing a 
hth. derivative which is (essentially) of limited variation, the 
coefficient of cos nx or sin nx in the Fourier series for fix) 
does not exceed a constant multiple of l/nk+l in absolute 
value. This leads to a theorem about the degree of approxi­
mation to fix) given by the partial sum of its Fourier series, 
that is by a particular trigonometric sum of the nth order. 

Lebesgue,lf in 1908, formally proposed the problem of dis­
cussing the relation between the accuracy of polynomial ap-

*Simon, A formula of polynomial interpolation, ANNALS OF MATHEMATICS, 
(2), vol. 19 (1918), pp. 242-245. 

t Weierstrass 2, same title as his first paper, BERLINER SITZUNGS-
BERICHTE, 1885, pp. 789-805. 

| de la Vallée Poussin 2, Sur Vapproximation des fonctions à1 une variable 
réelle et de leurs dérivées par des polynômes et des suites limitées de Fourier, 
BULLETINS DE L'ACADÉMIE ROYALE DE BELGIQUE, Classe des Sciences, 
1908, pp. 193-254. 

§ Kryloff, Sur quelques formules d'interpolation généralisée, BULLETIN 
DES SCIENCES MATHÉMATIQUES, (2), vol. 41 (1917), pp. 309-320. 

|! Picard, Traité d'Analyse, 2nd éd., vol. 1, pp. 252-253, 255-256. 
1Ï Lebesgue 2, Sur la représentation approchée des fonctions, RENDICONTI 

DEL CIRCOLO MATEMATICO DI PALERMO, vol. 26 (1908), pp. 325-328. 
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proximation and the requisite degree of the polynomial, and 
indicated that if f(x) satisfies a Lipschitz condition f or a ^ x 
S by it can be approximately represented by a polynomial of 
the nth, degree with an error not exceeding a constant multiple 
of V(log n)/n. This result was improved by de la Vallée 
Poussin,* who obtained the limit 1/ Vw in place of that just 
mentioned.! For a more restricted class of functions, re­
taining enough generality to include any function whose 
graph is a broken line with a finite number of segments, he 
found} the still closer limit 1/n. Then he added, § 

" I l serait très intéressant de savoir s'il est impossible de 
représenter l'ordonnée d'une ligne polygonale avec une 
approximation d'ordre supérieur à 1: n par un polynôme de 
degré n." 

This remark has been the direct or indirect occasion of 
most of the subsequent work on the subject. 

5. Inner Limit of Approximation. 8. Bernstein's Theory. 
The simplest example of a function coming within the speci­
fications of the problem is the function | x |, considered in the 
interval from — 1 to 1. I t was shown by de la Vallée Poussin || 
that the maximum error of an approximating polynomial of 
degree n can not approach zero faster than l/(n log3 n). S. 
Bernstein^ and the writer** independently replaced this limit 
by l/(n log n). The final solution, verifying de la Vallée 
Poussin's surmise that 1/n is the actual limit, was given by 
S. Bernstein,tt in a notable prize essay for the Belgian Academy, 

* de la Vallée Poussin 2, already cited, p . 222. 
f T h e hypothesis was somewhat differently stated by de la Vallée 

Poussin, bu t his analysis is immediately applicable to the case of a Lip­
schitz condition; cf. D . Jackson 1, cited below, p . 10, footnote. 

t de la Vallée Poussin 3, Note sur l'approximation par un polynôme d'une 
fonction dont la dérivée est à variation bornée, BULLETINS DE L'ACADÉMIE 
ROYALE DE BELGIQUE, Classe des Sciences, 1908, pp. 403-410. 

§Footnote, p . 403. 
|| de la Vallée Poussin 4, Sur les polynômes d'approximation et la repré­

sentation approchée d'un angle, BULLETINS DE L'ACADÉMIE ROYALE DE 
BELGIQUE, Classe des Sciences, 1910, pp. 808-844. 

If S. Bernstein 1, Sur l'approximation des fonctions continues par des 
polynômes, COMPTES R E N D U S , vol. 152 (1911), pp. 502-504. 

** D. Jackson 1, Über die Genauigkeit der Annaherung stetiger Funktionen 
durch game rationale Funktionen gegebenen Grades und trigonometrische 
Summen gegebener Ordnung, Dissertation, Göttingen, 1911; see pp. 49-52. 

f t S. Bernstein 2, Sur l'ordre de la meilleure approximation des fonctions 
continues par des polynômes de degré donné, Mémoire couronné, Brussels, 
1912. (Included in M É M O I R E S PUBLIÉS PAR LA CLASSE DES SCIENCES DE 
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with de la Vallée Poussin's problem for its text. Expanding 
into a discussion of a wide range of questions in the theory of 
polynomial approximation generally, the essay contains a 
number of results comparable in interest with the accomplish­
ment of its original purpose. One of these, by reason of its 
simplicity and its far-reaching consequences, may well be 
regarded as one of the most remarkable theorems of recent 
times. It will be worth while to dwell on it at some length. 
Here, again, it is possible to speak either of polynomials or 
of trigonometric sums. The statement is more striking in 
terms of the latter. For the trigonometric case, the theorem 
is as follows : 

Let Tn(x) be an arbitrary trigonometric sum of order n, and 
let L be the maximum of its absolute value. Then the maximum 
of the absolute value of the derivative Tn'(x) can not exceed nL. 

For this formulation, to be sure, the credit is not undivided. 
Bernstein's own statement* asserts merely that |7V(#)| 
can not attain the value 2nL; his proof is far from simple; and 
its validity has been called in question,! though this last 
remark applies only to his discussion of the trigonometric 
theorem, not to the polynomial case, in which he was primarily 
interested. The theorem was approached by subsequent 
writers from different angles, and was finally revealed in its 
true simplicity by de la Vallée Poussin,^ whose demonstration 
is well worth repeating here. 

An equivalent form of the assertion to be proved is as follows : 
If the maximum of \ Tn

f(x) \ is 1, the maximum of \ Tn(x) \ 
can not be less than 1/n. 

Suppose the maximum of | Tn(x) | were less than 1/n. 
Then, for any value of the constant C, the function 

Rn{x) = -s in (nx + C) — Tn(x) n 

would have the sign of sin (nx + C) at each of the 2n points 
L'ACADÉMIE KOYALE DE BELGIQUE, (2), vol. 4; the detailed citations be­
low, however, refer to the page-numbers of the essay itself, as printed 
separately.) 

* S. Bernstein 2, p. 20. 
t Cf. de la Vallée Poussin, passages cited in next footnote. 
j de la Vallée Poussin 5, Sur le maximum du module de la dérivée d'une 

expression trigonométrique d'ordre et de module bornés, COMPTES RENDUS, 
vol. 166 (1918), pp. 843-846; de la Vallée Poussin 1, pp. 39-42. 
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at which | sin (nx + C) | has a maximum, in an interval 
of length 27T. Because of the alternation of these signs, and 
the periodicity of the functions involved, Rn(x) would then 
vanish for at least 2n distinct values of x in a period, and con­
sequently, by Rollers theorem, the same thing would be true 
of the derivative 

Rn'(x) = cos (nx + C) - Tn'(x). 

But if C is chosen so as to make cos (nx + C) coincide in 
value with Tn

f(x) at a point where the latter is equal to ± 1, 
Rn(x) will have a double root at this point. Hence it will 
have, in an entire period, roots of aggregate multiplicity at 
least 2n + 1. For a trigonometric sum of order n, which 
can not vanish identically—since Rn(x), by reason of its 
changes of sign, can not be a constant—this is impossible, 
and the contradiction proves the theorem. I t can be shown 
further,* though not quite so simply, that the maximum of 
| Tn(x)\ will be greater than 1/n, unless Tn(x) has precisely the 
form (1/n) sin (nx + C), that is, the latter is the only function 
for which the limit specified in the theorem is attained. 

The corresponding theorem for polynomials may be stated 
as follows, for a particular interval : 

Let Pn(x) be an arbitrary polynomial of degree n, and let L 
be the maximum of its absolute value for — 1 ^ x ^ 1. Then 
the maximum of \ V 1 — x2 Pn'(%) \ can not exceed nL in the 
interval specified. 

Bernstein established this fact first,t and went from it to 
the trigonometric case. The relative simplicity of the opposite 
procedure, on the basis of de la Vallée Poussin's trigonometric 
proof, has been pointed out by the writer.J 

The most immediate application of the theorem is to a 
type of argument of which the following is a simple case. 
Let f{x) be a continuous function of period 2T, and let it be 
supposed that there exists, for every positive integral value of 
n, a trigonometric sum Tn(x), of order n, so that 

\f(x)-Tn(x)\ ^Qln\ 
where Q is independent of n and x. Then f(x) is the sum of 

* Cf. citations in preceding footnote. 
t S. Bernstein 2, pp. 6-11. 
j D. Jackson 2, On the convergence of certain trigonometric and poly­

nomial approximationsf TRANSACTIONS OF THE AMERICAN MATH. SOCIETY, 
vol. 22 (1921), pp. 158-166; see p. 162. 
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the uniformly convergent series 
Z\ + (T2 - Ti) + (ft - T2) + (Ts - TÙ + • • -, 

or, if ƒ (a;) — Tn(x) = rn(x), 
(1) ƒ(*) = 7\ + (n - r2) + (ra - r4) + (f4 - f8) + . . . . 

It will be shown that if the series on the right is differentiated 
term by term, the resulting series will be uniformly convergent, 
and ƒ(#) consequently must have a continuous first derivative. 
Since | rn | = Q/n2> by hypothesis, 

l n - r . 1 S Q + I <2Q, | r 2 - r 4 | ^ | - + | 2 < P > 

\n- n\ <-£-> •••• 
But since r% — r2 is a trigonometric sum of order 2, etc., it fol­
lows from the theorem on the derivative of a trigonometric 
sum that 

\(n-r2y\<2-2Q, | ( i * - r 4 ) ' | < 4 - f r , " • ' 

and, generally, that the derivative of the (p + l)th term on 
the right in (1) does not exceed 

o , . 2Q __Q_ 
- 3 22 CP-I) 2p 

The last quantity is the general term of a convergent series, 
and the uniform convergence of the series of derivatives is 
established. It is evident that this illustration by no means 
exhausts the possibilities of the method. Thus we may state 
the following more general theorem.* 

IS S(x) can be represented by trigonometric sums of order n 
with an error not exceeding Q/nk+a, where k is a positive integer 
or zero, and 0 < a < 1, then S(x) has a continuous kth deriva­
tive satisSying a Lipschitz condition of order a, that is 

LPV) -/ ( fcV)l s xl»' - xn\\ 
where X is a constant.] The idea can be carried still further. 

* Cf. de la Vallée Poussin 1, p. 57; also S. Bernstein 1, and S. Bernstein 
2, pp. 22-23, 27. 

t The value a — 1 is ruled out in the statement of the theorem; but 
if the hypothesis is satisfied for a = 1, as in the preceding illustration 
(k = 1), it is of course satisfied, and the conclusion holds, for an arbitrary 
value of a < 1. 
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The theorem concerning the order of approximation to \x\, 
like the theorem on the derivative of a trigonometric sum, is 
most accessible at present through the exposition of de la 
Vallée Poussin.* The idea of his proof is as follows. In the 
first place, the problem is referred to the equivalent one of 
representing | sin x \ by a trigonometric sum of order n in x, 
Lebesguef had pointed out that no trigonometric sum of order 
n can give an error smaller than the corresponding remainder 
in the Fourier series, multiplied by a quantity of the order 
of 1/log n. As it is readily recognized that the error in the 
Fourier series for | sin x | is of the order of 1/n, the* quantity 
l/(n log n), already mentioned as a step toward the final 
result, is seen at once to be an inner limit for the order of the 
best approximation. If the Fejér mean could be used in 
the same way as the Fourier sum proper, the desired limit 
1/n would be obtained with equal ease; for Lebesgue's remark 
is a consequence of the fact that the partial sum of the Fourier 
series for an arbitrary function can not exceed the maximum 
of the absolute value of the function itself, multiplied by a 
quantity of the order of log n, and in the case of the corre­
sponding Fejér mean, this multiplier is replaced by 1. But the 
method fails at first, because it is essential also that the Fourier 
sum of order n for a function Tn(x) is identical with Tn(x), 
while this is not true of the Fejér mean. However, de la 
Vallée Poussin observes that if Tk(x) is the Fejér mean of 
order k — 1, Tn{x) is reproduced identically by the formula 

Tn(x) = 2r2n(x) — rn(x); 

and from this relation he is able to draw the desired inference, 
not quite immediately, but by easy steps, in the course of 
two or three pages. The general theorem which intervenes is 
as follows. 

Let fix) be a given arbitrary function, let Sk(x) be the partial 
sum of its Fourier series to terms of order k, and let Tn(x) be 
any trigonometric sum of order n. Then the maximum of 
\f{x) —- Tn(x) | can not be less than one-fourth the maximum of 

*/ v Sn + Sn+l + ' * * 4" $2w-l 

* de la Vallée Poussin 6, Sur la meilleure approximation des fonctions 
d'une variable réelle par des expressions d'ordre donné, COMPTES RENDUS, 
vol. 166 (1918), pp. 799-802; de la Vallée Poussin 1, pp. 33-37. 

t Cf. e.g. Lebesgue 3, Sur les intégrales singulières, ANNALES DE LA 
FACULTÉ DE TOULOUSE, (3), vol. 1 (1909), pp. 25-117; see pp. 116-117. 
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Bernstein himself, in the prize essay, proves the theorem 
about the polynomial representation of | x | in two different 
ways.* Both of his demonstrations depend on an extension, 
interesting in itself, of the Tchebychef theory to the problem 
of the approximate representation öf a given continuous 
function by linear combinations of powers of x with arbitrarily 
given exponents.f The exponents may be any positive real 
numbers, not necessarily integral. There is a real generaliza­
tion, however, even if they are merely selected integers; 
there would be no point in saying that some powers may be 
omitted, in the approximating polynomials used, for that is 
always understood, as a matter of course; but the problem is 
essentially changed if it is demanded that certain powers 
shall be omitted. 

By way of obtaining a corresponding generalization of 
Weierstrass's theorem, Bernstein further inquires under what 
circumstances a sequence of positive powers xai, x**, • • •, will 
be sufficient (in technical language, complete) for the uni­
formly convergent representation of an arbitrary continuous 
function.^ He derives a condition which is necessary, and 
others which are sufficient. Müntz and Szasz§ later estab­
lished a condition which is both necessary and sufficient, 
namely (except for minor qualifications) the very simple re­
quirement that the series 2) (l/an) diverge. The last-named 
author extends the discussion to the case of complex exponents. 

The rest of Bernstein's memoir must be dismissed with the 
utmost brevity in the present summary. Among the topics 
treated may be mentioned some results concerning the ab­
solute value of a polynomial for complex values of the argu­
ment, || a study of the approximate representation of analytic 
functions of a complex variable, 1f theorems with regard to the 

* S, Bernstein 2, pp. 55-62. See also S. Bernstein 3, Sur la meilleure 
approximation de \x] par des polynômes de degrés donnés, ACTA MATHE­
MATICA, vol. 37 (1914), pp. 1-57. 

t S. Bernstein 2, pp. 38-41. 
t S. Bernstein 2, pp. 78-84. 
§ Szâsz, Über die Approximation stetiger Funktionen durai lineare 

Aggregate von Potenzen, MATHEMATISCHE ANNALEN, vol. 77 (1916), pp. 
482-496. The paper of Müntz, which I have not seen, is cited by Szâsz, 
loc. cit., p. 483, footnote. 

IJ pp. 13-15. 
H pp. 36, 65-76, 94r-95, and elsewhere. This subject, which has an 

extensive literature of its own, must be left outside the scope of the present 
review. 
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degree of convergence of Fourier's series and the Fejér means 
of Fourier's series,* in the spirit of the following section, and 
applications of the theory of approximation to questions of 
the existence of derivatives of functions of more than one 
variable.! 

A paper by MontelJ presents a noteworthy continuation 
of Bernstein's work in various directions, particularly with 
reference to derivatives of fractional order. 

6. Outer Limit of Approximation. From Picard's inequali­
ties, already cited, for the coefficients in a Fourier series, it 
follows that, if the function developed has a continuous kih 
derivative which is of limited variation, the remainder after n 
terms of the series does not exceed a constant multiple of 
l/nk. For k = 1, the same outer limit of error for the ap­
proximation obtainable by means of finite trigonometric sums 
of order n was found by de la Vallée Poussin, § under a similar 
but somewhat more general hypothesis. Most often, how­
ever, such discussion has involved the hypothesis of a Lip-
schitz condition, either on the function itself or on one of its 
derivatives. 

For the case of a function satisfying a Lipschitz condition, 
de la Vallée Poussin, || as has already been noted, found the 
order of approximation 1/V^ and the same limit was recorded 
a little later by Lebesgue, II both for polynomials and for 
trigonometric sums. From the point of view of a rapid survey 
of the problem, it is not necessary to specify each time which 
kind of approximating function is used, as the two classes of 
results are to a large extent interchangeable. 

Another step in advance was presently taken by Lebesgue,** 
who proved that the remainder in the Fourier series for a func­
tion of the kind under discussion can not exceed a constant 
multiple of (log n)fn. 

________ _ 
t pp. 97-103. 
ÎMontel, Sur les polynômes d'approximation, BULLETIN DE LA SOCIÉTÉ 

MATHÉMATIQUE DE FRANCE, vol. 46 (1919), pp. 151-192. 
§ de la Vallée Poussin 3. 
|| de la Vallée Poussin 2, p. 222. 
1f Lebesgue 3, pp. 112-115. 
** Lebesgue 4, Sur la représentation trigonométrique approchée des fonc­

tions satisfaisant à une condition de Lipschitz, BULLETIN DE LA SOCIÉTÉ 
MATHÉMATIQUE DE FRANCE, vol. 38 (1910), pp. 184-210; pp. 199-201. 
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He also showed that this result is final, as far as the 
Fourier series is concerned, that is that there exist functions 
satisfying a Lipschitz condition, for which the remainder does 
not approach zero any more rapidly.* 

There still remained a question as to the degree of approxi­
mation that might be attained by a different choice of the 
approximating functions. The writer showed that a function 
satisfying a Lipschitz condition can be represented by a 
trigonometric sum of the nth order, f or by a polynomial of 
the nth degree, { with a maximum error not exceeding a con­
stant multiple of 1/n, and that the limit 1/n in this general 
statement can not be replaced by any infinitesimal of higher 
order. § The truth of the last part of this assertion of course 
also follows immediately from Bernstein's results with regard 
to the function \x\, which were published a little later. The 
writer subsequently obtained inequalities for the magnitude of 
the numerical constants involved, so that the following state­
ments can be made in summary. || 

If f(x) ™ a function of period 2T satisfying everywhere the 
condition 
(2) \f(,x')-f(x")\^\\x'-x"\, 

it is possible to represent f(x) by a trigonometric sum of order n 
with a maximum error not exceeding K\/n, where K is an ab­
solute constant; the statement is true for K = 3, but not for any 
value of K less than ir/2. 

Iff{x) satisfies the condition (2) for a ^ x ^b,it can be repre­
sented throughout this interval by a polynomial of the nth degree 
with a maximum error not exceeding Lk(b — a)/n, where L is an 
absolute constant; the statement is true for L = 1 | , but not for 
any value of L less than | . 

The upper values for K and i , as actually computed by the 
writer, were slightly less than 3 and l j respectively, and they 
can be further reduced by other methods, due particularly to 

* Lebesgue 4, pp. 202-206. 
t D. Jackson 1, Theorem VI; see also top of p. 46. 
X D. Jackson 1, Theorems I, IV. 
§ D. Jackson 1, Theorems XII, XIII. 
|| D. Jackson 3, On approximation by trigonometric sums and polynomials, 

TRANSACTIONS OF THE AMERICAN MATH. SOCIETY, vol. 13 (1912), pp. 491-
515; Theorems I, II, VI, VII. There is a misprint in the statement of 
Theorem VII; for L2 should be read Li. 
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GronwalL* The ultimate determination of the best values for 
K and L, however, is still an open question. 

The order of approximation being once established for the 
case of a Lipschitz condition, corresponding results can be 
deduced without difficulty both for more general and for more 
restrictive hypotheses. By way of generalization,! let fix) 
be an arbitrary continuous function* of period 2T, say, to 
restrict attention to the trigonometric case, and let co (S) be 
the maximum of \fix') —fixn)\ f° r \xf — xn\ ~ 8. Let 
fi(x) be a function represented graphically by a broken line, 
equal to fix) at the points x = 2JT/TI ( j = 0, ± 1, ± 2, • • • ), and 
varying linearly from one of these points to the next. Then, 
for any x, fix) and fi(x) will each differ from the value at the 
nearest vertex point by not more than co(27r/n), and 

| / ( * ) - / i ( * ) | Ss2û>(2jr/n) 
for all values of x. Since fiix) satisfies a Lipschitz condition 
with coefficient œ(27r/ri)/(2T/ri), there will exist trigonometric 
sums Tn(x), of order n, so that 

I / e \ T ( M <• o ^(2T/ÏI) 1 3 , 
\Mx) - Tn(x) | S 3. - 2 ^ • - == ^ «(2T/H), 

and 

! ƒ ( * ) - ^ ) | - ( ! ; + 2 ) w ( ^ ) . 

A similar result can also be obtained directly by means of 
a definite integral, without the intermediate reference to the 
Lipschitz condition.J 

On the other hand, suppose that fix), once more assumed to 
* Unpublished letters to the present writer, January 21 and February 

16, 1913; On approximation by trigonometric sumsj this BULLETIN, vol. 
21 (1914-15), pp. 9-14. See also de la Vallée Poussin l, pp. 44-46. My 
computation, in the Transactions article cited, involved the ratio of two 
integrals, Jm' and Jm) within a few weeks after its publication, I was in 
receipt of letters from Messrs. Gronwall, I. Schur, and D. Cauer (the last-
named, then a student at Göttingen, writing informally in behalf of Pro­
fessor Landau), which contained, among other data, two proofs that 

Jm ^ I V 1 * ^ ) ' 
and seven proofs (including one quoted by Schur from Marcel Riesz) 
that limm.^ Jm' *= log 2. 

t See, e.g., D. Jackson 1, Theorem VIII. The fundamental idea of 
the proof is derived from Lebesgue 4, p. 202. 

% Cf. de la Vallée Poussin 1, pp. 44-46. 
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have the period 2ir, is not merely continuous itself, but has 
a continuous first derivative satisfying the Lipschitz condition 

!ƒ'(*')-ƒ'(*") I s x | * ' - * " | . 
There is a finite trigonometric sum Tn'(x) such that 

\f(x) - Tn'(x)\ s i ^ -

Moreover, it follows from the proof of the theorem on which 
this assertion is based, though not from the statement of the 
theorem itself, that Tn' can be taken so that its constant term 
is zero,* and its integral therefore is also a trigonometric sum 
of order n. Let the expression 

/(0)+ fXTn'(x)dx 

be denoted by Tn(x), and let ff(x) — Tn'(x) = rn{x). Then 

f{x) = Tn(x) + f%n(x)dx. 
Jo 

Of course the integral on the right does not exceed a constant 
multiple of 1/n, but it is possible to say much more than that. 
For the integral has a derivative which does not exceed 3X/n, 
that is the integral itself satisfies a Lipschitz condition with 
coefficient 3k/n, and can be represented by a trigonometric sum 
of order n with an error not exceeding 9\/n2. This sum, com­
bined with Tn(x), gives an equally close approximation for 
f(x). In generalf—though the proof requires a little attention 
in detail—if f(x) has a (k — l)th derivative which satisfies a 
Lipschitz condition with coefficient X, then f(x) can be approxi­
mately represented by a trigonometric sum of order n with an 
error not exceeding 3k\/nk. There is a corresponding but 
slightly less simple result for polynomial approximation.^ 

From the trigonometric theorem it follows immediately, by 
a remark of Lebesgue already cited, that if f(x) has a (k — l)th 

* That is, if the function for which an approximate representation is 
sought, fix) in this case, is such that its integral is periodic, the particular 
approximating function defined in the course of the demonstration will 
also have a periodic integral. 

t D. Jackson 4, On the approximate representation of an indefinite in­
tegral and the degree of convergence of related Fourier7s series, TRANSACTIONS 
OF THE AMERICAN MATH. SOCIETY, vol. 14 (1913), pp. 343-364; Theorem 
III. Cf. also D. Jackson 1, Theorem VII, and D. Jackson 3, Theorems 
III, VIII. 

t D. Jackson 4, Theorem VII; cf. D. Jackson 1, Theorems II, IVa, and 
D. Jackson 3, Theorems IV, IX. 
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derivative satisfying a Lipschitz condition, the remainder 
after terms of the nth order in the Fourier series for fix) does 
not exceed (log ri)/nk, multiplied by a quantity independent of 
n and x. I t is noteworthy that a different method yields a 
still closer result here, to the extent that the constant multiplier 
obtained is independent of h. If the coefficient in the Lipschitz 
condition is X, the error does not exceed X(log n)jnh, multiplied 
by an absolute constant.* 

Finally, we may note a case in which one of the theorems of 
the preceding section has an exact converse.! If fix) has a 
continuous kth derivative satisfying a Lipschitz condition of 
order a, where k is a positive integer or zero, and 0 < a < 1, 
then f{x) can be represented by trigonometric sums of order n 
with an error not exceeding Q/nk+a, where Q is independent of 
n and x. Taken without regard to its converse, the statement 
can be made both more precise, by exhibiting the dependence 
of Q on the coefficient in the Lipschitz condition, and more 
general, by varying the hypothesis on the kth. derivative. 

7. Trigonometric Interpolation. In the theory which forms 
the subject of § 6, much use is made of formulas involving 
definite integrals. I t is possible to vary the treatment by 
replacing the integrals by finite sums. From this substitu­
tion, which works out most satisfactorily in the trigonometric 
case, results an extensive theory of trigonometric interpola-
tion.J The ordinary formula of interpolation with equidistant 
ordinates has of course been known for a long time, but its 

* Cf. S. Bernstein 2, pp. 92-93; D . Jackson 4, Theorem X ; de la Vallée 
Poussin l , pp. 23-25, 27-29. 

t Cf. de la Vallée Poussin 1, pp. 51-52, 57; also D. Jackson 4, Theorem 

t Cf., e. g., de la Vallée Poussin 7, Sur la convergence des formules d'in­
terpolation entre ordonnées équidistantes, BULLETINS DE L'ACADÉMIE ROYALE 
DE BELGIQUE, Classe des Sciences, 1908, pp. 319-403; Faber 1, Über stetige 
Funktionen, MATHEMATISCHE ANNALEN, vol. 69 (1910), pp. 372-443, see 
pp. 417-443; Faber 2, Über die interpolatorische Dafstellung stetiger Funk­
tionen, JAHRESBERICHT DER DEUTSCHEN MATHEMATIKER-VEREINIGUNG, 
vol. 23 (1914), pp . 192-210; D . Jackson 5, On the accuracy of trigonometric 
interpolation, TRANSACTIONS OF THE AMERICAN M A T H . SOCIETY, vol. 14 
(1913), pp. 453-461; D . Jackson 6, A formula of trigonometric interpolation, 
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, vol. 37 (1914), pp. 
371-375; D . Jackson 7, Note on trigonometric interpolation, RENDICONTI DEL 
CIRCOLO MATEMATICO DI PALERMO, vol. 39 (1915), pp. 230-232; D . Jack­
son 8, On the order of magnitude of the coefficients in trigonometric interpola­
tion, TRANSACTIONS OF THE AMERICAN M A T H . SOCIETY, vol. 21 (1920), 
pp. 321-332. 
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convergence seems to have been first studied in detail by de la 
Vallée Poussin and Faber within fifteen years. The con­
vergence properties of the interpolating formula are similar 
to, but not absolutely identical with, those of the Fourier 
series, which it formally resembles. The analogy extends to 
questions of degree of convergence, and to the various methods 
of trigonometric approximation which have been devised for 
one special purpose or another. 

8. The Method of Least mth Powers. Of modest importance 
in itself, perhaps, but of some interest as affording a field 
for the application of the preceding results, is the theory of 
what may be called the method of least mth powers.* If f(x) 
is a continuous function of period 2T (to restrict attention 
to the trigonometric case once more), it is well known that 
the trigonometric sum Tn(x), of order n, for which the integral 

/»2ir 

[ƒ(*) - Tn(x)Jdx 
Jo 

has the least possible value, is the partial sum of the Fourier 
series for f(x). The condition determining Tn(x) can be 
generalized by writing, in place of the square of the error, 
the mth power of its absolute value, where m is an arbitrary 
positive exponent, most conveniently assumed to be greater 
than 1. The resulting sum Tn(x) is not readily amenable to 
calculation, because, like the Tchebychef sum, it does not 
depend linearly on f(x); but it is possible to show that it 
always exists, is uniquely determined, for m > 1, and ap­
proaches the Tchebychef sum as a limit when m becomes in­
finite. Furthermore, if m is held fast and n is allowed to 
increase indefinitely, Tn(x) will converge uniformly to the 
value ƒ (x), under suitable hypotheses. The proof depends on 
Bernstein's theorem concerning the derivative of a trigono­
metric sum, and on the possibility of representing f(x) by a 
properly chosen sum with a specified degree of approximation. 

THE UNIVERSITY OF MINNESOTA. 

* Cf. D. Jackson 9, On functions of closest approximation, TRANSACTIONS 
OP THE AMERICAN MATH. SOCIETY, vol. 22 (1921), pp. 117-128, and D. 
Jackson 2, already cited. The polynomial case had previously been 
treated by Pólya, in a note with which I was not acquainted at the time 
of writing my own papers: Sur un algorithme, etc., COMPTES RENDUS, vol. 
157 (1913), pp. 840-843. 


