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CREMONA TRANSFORMATIONS AND APPLI­
CATIONS TO ALGEBRA, GEOMETRY, 

AND MODULAR FUNCTIONS* 

BY A. B . COBLE 

1. Introduction. Two of the most highly developed fields 
of modern mathematics are those associated with the projective 
group and the birational group. We have on the one hand 
projective geometry with its analytic counterpart in the theory 
of algebraic forms, and on the other hand algebraic geometry 
and algebraic functions. Between these two domains there 
lies the group of Cremona transformations for which as yet no 
distinctive geometry and no distinctive invariant theory has 
been formulated. I t seems opportune therefore to give this 
brief résumé of achievement in this field along the somewhat 
scattered lines in which research has been pursued, to indicate 
certain problems that await solution, and to point out certain 
directions in which results of importance may be expected. 

Several topics are omitted which perhaps first occur to one's 
mind when Cremona transformations are mentioned. The 
most important of these omissions is the quadratic transfor-
formation. This, first introduced analytically by Plücker(1)f 
in 1829 and by Magnus(2) in 1831 as a reciprocal radii trans­
formation, has been the subject of repeated investigation down 
to recent papers of Emch (3). I t is for the geometer a power­
ful instrument for simplifying a problem or for extending 
a theorem. 

The group of plane motions underlying euclidean geometry 
may be enlarged in one direction to the projective group and 
projective geometry or in another direction to the inversive 
group and inversive geometry. The quadratic transforma­
tions of this latter group were first considered in general by 
Möbius (4) in 1853 under the name of Kreisverwandschaften. 

* Presented before the Society at the Symposium held in Chicago, 
April 14, 1922. 

t Such numbers refer to the papers listed at the close of this article. 
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Ten years later, in 1863, Luigi Cremona(5) first established 
the theory of the general birational point transformation valid 
throughout the plane. This was extended to space in 1869-71 
by Cayley(6), Cremona(7), and Noether(8). 

Before taking up this general theory two famous theorems 
deserve mention. The first states that the general ternary 
Cremona transformation is a product of quadratic transfor­
mations. This was surmised by Clifford(9) in 1869, and was 
verified by Cayley(10). Imperfect proofs given by Noether(11) 

and Rosanes(12) in 1870 were finally replaced in 1901 by 
a rigorous proof due to Castelnuovo(13). Unfortunately this 
theorem has no analog in space, as I shall point out later. The 
second theorem, proved by Noether(14) in 1871, asserts that 
any algebraic curve can be transformed by a Cremona trans­
formation into a curve with isolated multiple points with 
distinct tangents. The curve as thus simplified is a suitable 
basis for the algebraic functions which Noether had in mind. 
A proof more geometric in character was given by Bertini(15) 

in 1888. 

A. CREMONA TRANSFORMATIONS FROM SPACE TO SPACE 

2. Classification of Algebraic Correspondences. This section 
is largely introductory. Consider the rational transformation* 

(1) \yi = /iOo, x\, x2)
n, 

12/2 = f2(Xo, Xi, X2)
n, 

from point x of a plane Ex to point y of a plane Ey, where, first, 
the three curves ƒ of order n do not belong to a pencil, t and 
second, the three curves ƒ are not compounded of members of 
a pencil, as would be the case, for example, if they were pairs 
of lines on a point. In short the jacobian J(J0, / i , f2) does 
not vanish identically. Then, as x describes the plane Ex, 
y describes the plane Ey and vice versa. We have thereby 

* Throughout this paper, homogeneous coordinates are used. 
11 shall use the terms pencil, net, and web for a linear system of oo \ 

oo2, oo3 things respectively. 
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merely established a projective correspondence between the 
net of lines 7702/0 + myi + 7722/2 = 0 in Ey and the proper net of 
curves 770/0 + 771/1 + 772/2 = 0 in the plane Ex, where the term 
proper implies that J=j=0. To the point y, the base of a line 
pencil in EVf there corresponds in Ex the variable base points 
of the corresponding pencil of curves in Ex. 

We distinguish here three cases. First, the case n = 1, for 
which the net in Ex is merely the net of lines whose pencils 
have a single base point variable with the pencil. This is the 
familiar projective transformation. Second, the case in which 
n > 1 and in which the pencils of the net still have a single 
base point on Ex variable with the pencil. This is the general 
Cremona transformation. The coordinates of the variable base 
point can be expressed rationally in terms of those of y, and 
the transformation is birational throughout the planes. Third, 
the case in which n > 1 and in which the pencils of the net 
have k base points variable with the pencil. This is a 1 to k 
correspondence between Ey and Ex, and the coordinates x are 
irrational k-valued functions of the coordinates y. The bi~ 
rationality is restored by a simple device. As x runs over a 
curve g{x) = 0 in Ex, y runs over a curve h(y) = 0 in Ey; 
and, for each position of y on h (y), in general only one of the 
k corresponding points x on Ex will lie on the given curve g(x), 
so that equations (1) together with g(x) = 0 establish a bi­
rational correspondence between x and y which, however, is 
limited to the curves g, h. To such transformations, one-to-
one over limited regions of the linear spaces in question, the 
term birational transformation will be confined. 

If to (1) we add new equations of the same form, say, 

hs = /sOo, xi, x2)
n, 

(2) \ 
[yd = fd(x0, xi, x2)

n, 

thereby enlarging the net of curves ƒ to a linear system of 
dimension d and expanding the plane Ey to the linear space Sd, 
then we have a mapping of the plane Ex upon a manifold M2

k 

of dimension 2 and order k in Sd, which in general is birational. 
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3. Fundamental Points and Principal Curves. Reverting to 
the case of the Cremona transformation (1) for which a single 
base point x of the pencils of the net is variable, we can show(16) 

that the fixed base points of the pencils are fixed for the 
entire net, say at pi, p2, * • •, pP with multiplicities n, r2, • • •, 
rp respectively. For these points—the fundamental points, or 
F-points, of the transformation—the functions ƒ vanish and y 
is indeterminate. For simplicity I shall assume that these 
points are isolated. I t is, however, a single linear condition 
on the net that a curve of the net shall pass through an F -point 
p of multiplicity r with a given direction. To the pencil of 
curves with this given direction there corresponds on Ey a 
pencil of lines on a definite point y. The locus of such points 
y is the principal curve, or P-curve, on Ey which corresponds to 
p on Ex, or rather to the directions about p on Ex. I t is 
rational and of order r, since a line on Ey meets it in as many 
points as the corresponding curve of the net on Ex has direc­
tions at p. The P-curves on Ey can meet only at the P-points 
on Ey of the inverse transformation, say qi, q2, • • •, qa of 
multiplicities sh s2, • • •, sa (a = p(17)) for the curves of the net 
on Ey (also of order ?i(17)) which correspond to the lines on Ex. 
To the directions about an P-point on Ey there corresponds a 
P-curve on Ex which can meet the general curve of the net 
only at the base points. I t must therefore be a fixed rational 
constituent of a pencil of the net. Conversely if a pencil of 
the net has a fixed part, this part must correspond to a single 
point,—necessarily an P-point,—on Ey. Thus if the net (1) 
is given on EXJ and its base points of multiplicities r are thereby 
known, the pencils with fixed parts are easily isolated. If also 
the projective correspondence between lines on Ey and curves 
of the net is given, the pencils with fixed parts determine the 
position of the P-points on Ey and the orders of the fixed 
parts are the multiplicities of these P-points for the net on Ey. 
The number of constants required to determine the transfor­
mation is 2p + 8. If otij is the number of times the curve Pj 
on Ey, which corresponds to pj on Ex, goes through qi on Ey, 
it is the number of directions at qi which correspond to direc-
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tions at p3-, and therefore also the number of times the curve 
Pi on Ex, which corresponds to qi, passes through p3: We 
shall have occasion to use these numbers soon. 

Cremona transformations in space are obtained by setting 
up a projective correspondence between the web of planes in 
8s(y) and a homoloidal web of surfaces in Sa(x), i.e., a web 
such that the nets of surfaces in the web have a single variable 
intersection x which describes completely the space Ss(x). 
We now find P-points of three kinds which are exemplified by 
the cubi-cubic transformation determined by three bilinear 
forms 

(3) (a*0(j8#) = 0, (i= 1 ,2,3) . 
Here for general forms a point x determines three planes 
which meet in a unique pointy unless x happens to be on the 
sextic curve defined by the vanishing of the (3, 4) matrix of 
coefficients of y. Then the three planes meet in a line every 
point y of which is a correspondent of the given point x. We 
say then that x is an P-point of an P-curve of the first kind 
and that its corresponding line is a P-curve whose locus is a 
P-surface of the first kind. The GO 2 directions at ^ lié oo1 at 
a time in the oo 1 planes on the tangent line to the P-curve at 
x, and all the directions at x in one of these planes correspond 
to a single point on the P-curve of x. 

However, in the particular case when the forms (3) are 

(4) E ^ o aijXjVj = 0, (i = 1, 2, 3), 

the transformation just considered degenerates into the 

familiar type, 
(5) yj = rj/xj = prjXkxiXm, (j, k, l, m = 0, 1, 2, 3). 

The sextic P-curve has become the six edges of a tetrahedron 
Tx. The point x on such an edge is still an P-point. The 
oo2 directions about it correspond no longer to points on a 
P-curve, but rather to directions about a definite point on an 
edge of a tetrahedron Ty in Ss(y). We say that the six edges 
are F-curves of the second kind. They have no corresponding 
P-surfaces. Another novelty here is the four F-points of the 
second kind, the four vertices of Tx. To the oo2 directions 
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about one of these there correspond the oc2 points on a plane 
of Ty so that to an P-point of the second kind there corresponds 
a P-surface. Moreover the P-curves of the second kind are 
a necessary consequence of the existence of the P-points of 
the second kind, since the cubic surfaces of the web with nodes 
at the vertices of Tx must necessarily contain the edges of Tx. 
This space transformation is the immediate extension of the 
quadratic transformation of the plane. 

In four dimensions, a Cremona transformation may have 
P-surfaces, P-curves, and P-points, each of various kinds, and 
obviously the possible complications increase with the dimen­
sion. However, the transformation of the type (5) preserves 
its form throughout, being determined in Sk(%), Sk(y) by a 
set of h + 1 P-points in either space and a pair of corresponding 
points, all other P-points of the transformation being a neces­
sary consequence of the existence of the given sets. 

To replace the theorem which states that in the plane direct 
and inverse transformations have the same number of P-
points, Pannelli(18) proves that, if in space they have respec­
tively a, a' P-points and r, r P-curves of genera p*, p / , then 

a + r — 2iPi = a' + r' — S»p/. 

From the fact that in space the product of two transfor­
mations with respectively P-curves of genera pi, p2 will itself 
have P-curves of genera equal to both pi and p2, and the 
further fact that transformations can be constructed with an 
P-curve of arbitrarily great genus Miss Hilda Hudson(19) 

concludes that the general space transformation can not be 
expressed as a product of a finite number of given types. 

4. Types of Cremona Transformation. If the Cremona 
transformation of order n in the plane has P-points of multi­
plicities ri, r2, " m, TP arranged in descending order of magni­
tude, we deduce from the fact that the curves of the net are 
rational, and that they have but a single variable intersection, 
the necessary conditions 

/Ax ƒ n 2 + r2
2 + • • • + rp

2 = n2 — 1, 
W I n + r2 + • • • + rp = 3(n - 1), 
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on the positive integers n, p, n, • • •, rp. In addition to these 
there are an unlimited number of inequalities of the form 

f n + r2 ^ n, 
/7x n + • • • + r6 S 2n, 
Kn )2n+r2+ . . . +r7mZn, 

[ n~\- • • • + r9 ^ Sn, etc., 
which must be satisfied by these integers lest the curves of 
the net all contain a factor of order 1, or 2, or 3, etc. For 
given n, the solutions of this Diophantine system are finite in 
number and the tabulations of such solutions from Cayley's(20) 

articles to the more recent articles of Montesano(21) and 
Larice(22) are arranged in this way. I t will appear, I hope, 
that a more natural classification of these solutions is 
according to the number p of jF-points. For p < 9 the number 
of solutions is finite. For p = 9 the number is infinite and I 
have proved(23) that this infinite number can be arranged 
in 960 • 37 • 2 classes, such that each class contains an infinite 
number of solutions depending on. the unrestricted* variation 
of eight integers. This is by far the most extensive aggregate 
of solutions as yet formulated. 

The transformation (1) transforms a curve of order /x0 with 
multiplicities MI> • • -, MP at the i^-points on Ex into a curve of 
order MO' with multiplicities fxi, • • •, MP' at the i^-points on 
Eyy where 

rfio = nfxo — niii — r2M2 • • • — rpfip, 

(8) J Ml' == SllÂ0 ~~ ail/Xl ~~ ai2jU2 " ~~ ai^9 

iMp' = SpMo — «P 1Mi — oipjH • • • — app jLtp. 

If also pairs of ordinary points are to be considered we add 

(9) /Xp'+i = - ( - 1)MP+I> etc. 
The coefficients n, rj, Si, an of this linear transformation 
determine the type(2S) of the Cremona transformation. All 
types of this kind can be generated by that of the quadratic 
transformation, namely, 

T/Zo' = 2^o — Ml — M2 — M3, 
Q 0 ) J Mi == Mo — M2 "-" M3> 

|M2 = Mo "~ Mi "~ M3> 
IM37 = Mo — Mi ~ M2, 
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together with permutations of the ju's or / / ' s . In this way, 
for given p, we obtain a linear group with integral coefficients 
whose elements furnish the solutions of (6), (7), a group whose 
general modular theory has yet to be studied. 

For spaces of higher dimension, we define a regular Cremona 
transformation to be a product of projectivities, and of a 
single transformation of the type (5), y/ = 1/xi, (i = 0, 1, 
•••, k). Such regular transformations have properties en­
tirely analogous to those of the plane. For 8z they have been 
studied by S. Kantor(24) and for Sk by myself(23). The 
preceding arithmetic discussion is generalized in my paper(23). 

B. CREMONA TRANSFORMATIONS IN A SINGLE SPACE 

5. The Cremona Group and its Subgroups. In this section 
the planes Ex and Ey are understood to be superposed. We 
should perhaps speak rather of the Cremona transformation 
from point x to point x' QÎ the same plane. The totality of 
such transformations form a group. This group does not 
depend on a finite number of parameters since an element 
with p jP-points depends upon 2p + 8 constants and p may be 
as large as we please. Nor is it an infinite group in the sense 
of Lie, since it is not defined by differential equations. Though 
it contains continuous subgroups its most striking property is 
the discontinuity which appears in the variation of the order n 
of its elements throughout the range of positive integers. 
One might expect therefore to find within or associated with 
it a rich array of discontinuous groups both finite and infinite. 

Enriques(25) has shown that any finite continuous sub­
group in the plane can be transformed by Cremona transfor­
mation into one of three types : (a) the 8-parameter collinea-
tion group; (b) the 6-parameter group of inversions; and (c) 
the Jonquiere groups Jm, which carry into itself a pencil of rays 
on a point 0, and also a linear system of curves of order m 
with an (m — l)-fold point at 0 and common tangents at 0; 
or into a continuous subgroup of one of these three types. 
Enriques and Fano(26) have made a similar study for space 
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with analogous results. Noether(27) has classified continuous 
groups of quadratic transformations in S3 into five total groups 
with various subgroups. In general one may say that any 
continuous group of Cremona transformations in S& can be 
regarded as a projective group in a space Sd, d > k, which has 
an invariant M^ For the group has an invariant linear 
system of dimension d which maps £& upon an M*. in £<*. 
Mohrmann(28) has determined these surfaces in Sd for the 
three types of Enriques. 

Apart from the projective subgroup, the most important of 
the groups of Enriques is the inversive group. If the F-points 
of a quadratic transformation and its inverse are respectively 
(Pu P2, Ps) and (qi, q2, q$), such that directions at p% correspond 
to points on g-,g&, the group of inversions is made up of those 
quadratic transformations for which the pairs (pi, pi) and 
(qu Ç2) coincide at the circular points. The applications of 
this group in metric geometry and function-theory are well 
known. I t may be extended to space in various ways. If 
the circular points be replaced by the absolute conic at infinity, 
the group of quadratic inversions in space is obtained. If the 
pair of circular points be replaced by three lines in space, a 
quite different group of cubic transformations appears. Young 
and Morgan(29) have discussed this group and its extensions 
with particular reference to the cubic curves bisecant to the 
three lines. These curves are one extension of the circle in 
the plane; but perhaps a more natural extension is to the 
cubic surfaces containing the three lines. Such surfaces are 
given analytically by trilinear binary forms as circles are given 
by bilinear binary forms in z, z. 

Mention should be made at this point of infinite discontin­
uous subgroups of the Jonquière type. If in the plane we fix 
(pu qi) at 0, the quadratic transformations generate the group 
of all Jonquière transformations of any order n with (n — 1)-
fold F-point (both direct and inverse) at 0. This group has 
as an invariant the line pencil at 0. I t is of the same general 
character as the Cremona group itself. If in space we con­
sider the regular transformations generated by cubic trans-
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formations with .F-tetrahedra (pi, •••, p±), (gi, •••, g4) for 
which (pi, qi) coincide at a fixed point 0, there is obtained a 
group in oo to 1 isomorphism with the plane Cremona group 
which I(30) have called the dilation of the plane Cremona 
group. I t is, in fact, considered as a group on the net of lines 
through 0, indentical with the planar group. If the pairs 
(Pu P2), (qiy #2) coincide at (Oi, 02), we have a dilation of the 
planar Jonquière group. Finally if the triads (pi, p^, ps), 
(QI> Ç2, Çs) coincide at (0\, 02, 03), we have the special case of 
the group of Young and Morgan for which the three lines form 
a triangle. For all of these cases the extensions to higher space 
are more or less mechanical. 

6. Fixed Points and Cyclic Sets. The transformation in the 
plane of order n, Cn, has n + 2 fixed points defined by the 
vanishing of the matrix 

II #0 #1 #2II 
Il/o ƒ1 h II 

outside the ^-points. I t may, however, have a curve of fixed 
points accounting for some or all of the isolated fixed points. 
The order of Cn

2 is m ^ n2. As a rule m > n, so that Cn
2 

has more fixed points than Cn. The extra fixed points arise 
from those pairs which are interchanged by Cn. Similarly, 
the fixed points of Cn

z are either fixed points of Cn or points 
of cyclic triads of Cn. Proceeding in this way, the number of 
cyclic &-ads may be obtained, a number which must be modi­
fied if at any time a locus of 00x cyclic fc'-ads (kf a factor of k) 
should arise. In 1866 Reye(31) discussed the four fixed points 
of the quadratic transformation and in 1880 S. Kantor(32) 

determined its cyclic triads. I t must be remarked, however, 
that the fixed points, and in general the cyclic sets, play a 
minor rôle in the transformation as compared with the 
jF-points. 

If every point of the plane is a member of a cyclic &-ad (or 
for particular points a member of a cyclic fc'-ad, where k' is a fac­
tor of k), the transformation is periodic of period k. The most 
interesting case is thé involutory transformation. Bertini(33) 

has proved that any involution can be transformed into 
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one of four types: (a) the harmonic homology; (b) the 
Jonquière involution of order n; (c) the Geiser involution of 
order 8; and (d) the Bertini involution of order 17. An 
involution interchanges a line and an n-ic curve which meets 
the line in 2k involutory pairs and n—2k points on the curve of 
fixed points. Here k is the so-called class of the involution. In­
volutions of successive classes have been studied by Bertini(34), 
Martinetti (35), and Berzolari(36), and the types found by them 
have been reduced by Morgan(37) to the four types of Bertini. 
However, the class of an involution is a projective rather than 
a cremonian invariant number for the involution. 

For the greater part of our knowledge of transformations of 
higher period and of finite Cremona groups, we are indebted 
to the genius of the great geometer S. Kantor. His work in 
this field is remarkable both for breadth of view and mastery 
of complicated detail. I shall not have space to outline his 
methods, which, as set forth in his crowned memoir(38) and his 
book (39),have been reviewed by Caporali(40) and by Kantor(41) 

himself. His results have been corrected in important 
but not essential particulars by Wiman(42). Kantor has 
considered also periodic transformations in space(43) and has 
derived the finite groups of regular transformations in $3(44). 

C. GEOMETRIC APPLICATIONS 

7. Canonical Forms. The applications of Cremona transfor­
mations to geometry are more or less adventitious. Broadly 
speaking, transformations enter into geometry in one of three 
ways. First, the geometric properties of a given transforma­
tion may be studied and it is very commonly true that partic­
ular transformations define geometric figures of great interest. 
Instances of this are given in § 9. Secondly, the elements of 
a given geometric problem may be such that some or all of 
them serve to define a transformation whose known properties 
illuminate the given problem. Third, a given geometric prob­
lem may be transformed into a simpler form by a properly 
chosen transformation. The last is perhaps the most common 
use of transformations. 



340 A. B. COBLE [Oct., 

In birational geometry, a particular curve or surface is 
usually studied after it has been birationally transformed into 
a canonical or normal form. So also in problems which involve 
linear systems of curves or of surfaces, it is usually convenient 
first to transform the given system by a Cremona transfor­
mation into the simplest possible form before discussing its 
properties. 

In connection with his discussion of involutions Bertini(33) 

has shown that a pencil or a complete net of rational curves 
(i.e., a net determined by base points alone) can be trans­
formed into a pencil or net of lines; a pencil of elliptic curves 
into a pencil of order 3r with 9 r-fold points; a net of elliptic 
curves into a net of cubics on 7 points; and a web of genus 2 
with 4 variable intersections into the web of sextics with 8 
given nodes. Guccia(45) extends these results to linear 
systems of any dimension of rational and elliptic curves, and 
for the latter case finds that all can be transformed into either 
a linear system of elliptic cubics with v — 0, 1, • • -, 7 simple 
base points; or into a linear system of quartics with two 
nodes; or into the pencil of order 3r with 9 r-fold points. 
Martinetti(46) considers linear systems of genus 2, and Yung(47) 

linear systems of any genus. These investigations are 
reviewed and confirmed by Ferretti(48), following Castel-
nuovo's revised treatment of the homoloidal net. S. Kantor(49) 

developed an equivalence theory for linear systems of 
rational, elliptic, and hyperelliptic curves on the hypothesis 
that the base points of the system of like multiplicity are not 
to be separated by the use of algebraic irrationalities, and 
thereby naturally obtained a larger number of types. 

These canonical forms are very useful in connection with 
mapping problems. When we set as in (1), (3) 

y% = fi(xo> xi, x2) = fi(xo, xi, %2f), ($ = 0, 1, • • -, d), 

where x, x' are co-points under a Cremona transformation, 
and thereby map the plane Ex upon a 2-way in Sd by means 
of the linear system of curves ƒ*, then the linear system ƒ / 
determines precisely the same map. Evidently the essential 
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peculiarities of the map will be more clearly presented if the 
mapping system is first reduced to a normal form. 

If d = 3, these maps are the rational surfaces. By these 
methods Picard(50) shows that the only surfaces whose plane 
sections are rational are the Steiner quartic and the rational 
ruled surfaces, and Noether(51) determines the types of 
rational surfaces of order 4. Other writers along this line are 
Caporali, Segre, Del Pezzo and Castelnuovo. If d = 2, the 
map reduces to a plane Ey, and there is established a (1 to k) 
correspondence between Ey and Ex. Classifications of such 
correspondences for simpler values of k have been made by 
Sharpe and Snyder(52) and by others. 

8. Birational Transformations. We may define the bi-
rational group of a curve or surface to be that aggregate of 
birational transformations which transforms* the given curve 
or surface into the totality of curves or surfaces, respectively, 
which are of the same class, that is, birationally equivalent to 
the original curve or surface. Under this definition, any 
Cremona transformation belongs to the birationaLgroup. The 
converse is not true, however. For example, the rational 
plane sextic curve can be birationally transformed into a line, 
but its order cannot be reduced by plane Cremona transfor­
mation. If, however, a birational transformation under con­
sideration, say from plane curve to plane curve, can be effected 
by a Cremona transformation, then the existence of the latter 
will necessarily throw much light on the former. For the 
behavior of the transformation off the curve conditions its 
behavior on the curve. This transition from birational to 
Cremona transformation is usually not unique. Thus given 
a cubic curve, (ax)3 = 0, the pairs of points x, x' for which 
(ax)(cLx')cLi = 0 (i = 0, 1, 2) are corresponding pairs of a 
birational transformation of the hessian cubic into itself. 
These pairs x, xf satisfy a net of bilinear relations, and any 
one of the oo2 pencils of bilinear relations in this net determines 
an involutory quadratic transformation which effects the given 
correspondence on the hessian. This system of quadratic 
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involutions is of great help in studying the properties of the 
hessian as related to the correspondence upon it. More pre­
tentious examples of this sort in connection with surfaces are 
found in papers of Snyder(53) and of Snyder and Sharpe(54). 

9. Geometric Figures attached to Cremona Transformations and 
Groups. In this and the following section I wish merely to 
indicate some interesting geometric contacts of such particular 
Cremona transformations and groups. 

The Geiser(55) involution G has copoints (x, xf) which 
make up with 7 given points the 9 base points of a pencil of 
cubics. The locus of lines on which (x, x') coincide is a general 
quartic envelope for which the 7 points form an Aronhold 
system of double points. 

The Bertini involution B has copoints (x, x') which are 
simple base points of a net of sextics with nodes at 8 given 
points. Its fixed points are the ninth nodes of such sextics. 
I t isolates the 120 tritangent planes of a space sextic of genus 
4 on a quadric cone(56). 

The Geiser(55) involution in space G' has copoints x, xf 

which make up with 6 given points the 8 base points of a net 
of quadrics. Its locus of fixed points is the Weddle quartic 
surface. 

The Kantor(57) involution in space K is defined by the 
fact that quartic surfaces with nodes at 7 given points and on 
a point x meet in another point xf. The ten nodes of a Cayley 
symmetroid quartic surface have the characteristic property 
that the involution K determined by any seven of the nodes 
has the other three nodes for fixed points. 

The system of cubic curves on 5 points of the plane is 
unaltered by a Cremona Gw with quadratic elements. The 
plane is mapped by this system upon a 2-way of order 4 in £4 

which admits 16 coUineations. Projected from a point not on 
it this 2-way becomes a quartic surface with a double conic(58) ; 
from a point on it a general cubic surface(59). 

The extension of this group to space is a Cremona G32 

which leaves a Weddle surface unaltered. Quadrics on the 
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six nodes of the Weddle surface map it upon a Kummer 
quartic surface and the G32 becomes the collineation Gu of the 
Kummer surface(60). 

The two groups just defined can be generalized to a G2*
+2 

in Sk determined by k + 3 points, but the further cases have 
not yet been studied. I t is worth noting that in the cases for 
which k is odd the group will contain an involution like Gf 

which is symmetrically related to the whole set of k + 3 
points (see (23\ p. 369, (29)). 

The cross-ratio group of Moore(61) of order (k + 3)! is 
determined by a base (k + 2 points) in $&. I t permutes the 
system of rational norm curves on the base with the k + 2 
systems of lines on each of the base points. The form prob­
lem of this group consists in the determination of k independent 
cross-ratios of a binary (k + 3)-ic whose invariants are given. 

I t is clear from the above instances that Cremona transfor­
mations are intimately related to important geometric con­
figurations. However the real utility of such transformations 
for geometric investigation can be realized only after closer 
study. (See, e.g., Conner, loc. cit. (57).) 

D. ALGEBRAIC APPLICATIONS 

10. Difficulties. I have remarked in the introduction that 
there exists as yet for the Cremona group no distinctive 
geometry and no distinctive invariant theory. Much of the 
literature at hand deals with the transformations in a descrip­
tive way, i.e., their projective properties are developed. On 
the other hand, writers continually use such properties as the 
invariance of the genus or the permanence of linear series on 
an algebraic curve under Cremona transformation; but these 
are properties which belong properly to the birational group 
rather than to its Cremona subgroup. Fano(62) remarks: 

" I t may be a question whether there are properties of curves 
and surfaces not invariant under the birational group but 
yet invariant under the Cremona group. On this point 
no systematic investigations have yet been made." 
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As against this view, we observe that any rational curve 
can be birationally transformed into a straight line, but that 
not every rational curve can be so reduced by a Cremona 
transformation. There must in the nature of the case be 
some way of stating this latter possibility. What is desired is 
a language whose terms are invariants of the Cremona group 
but of no larger group. In projective geometry we speak of 
a curve of the nth order; in birational geometry of a curve, 
including under the term any one of the entire algebraic class; 
the corresponding term in cremonian geometry has as yet no 
well-defined content. Though the number of cremonian words 
is quite small they are not entirely lacking. Thus the term 
"linear system of curves" is cremonian, for a Cremona trans­
formation transforms such a system into a similar system, 
whereas a birational transformation, being defined on only a 
single curve, cannot affect a system. Again the theorem:— 
"The jacobian of a net of curves is a covariant of the net"— 
belongs not merely to projective geometry for which it is 
commonly proved, but rather to cremonian geometry. For 
if the net N is transformed by any Cremona transformation 
into a net N', the jacobian JN of N, the locus of additional 
nodes of curves of the net N, is necessarily transformed into 
the jacobian JN/ of the net N'. The very meagreness of the 
cremonian vocabulary ensures that every additional term 
introduced into it will lead to a considerable enrichment of the 
geometry. I trust that this statement will be confirmed when 
the term congruence of point sets under Cremona transformation 
is discussed later. One should not overlook, however, the 
satisfactory state of two important problems in the plane; 
namely, the determination of reduced types for linear systems 
and for finite subgroups. 

11. Two.Fields that admit an Invariant Theory. Two things 
must be present before an invariant theory is possible: (1) a 
group of operations and (2) a field of objects permuted by the 
elements of the group. These are the bare essentials. In 
order that such a theory shall be fruitful it is also necessary 
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that the group shall be reasonably significant and that the 
field of objects shall be reasonably uniform so that an object 
and its transform may have in common a sufficient body of 
properties to form a reasonable basis of comparison. The 
Cremona group is significant enough, but it is hard to find 
fairly permanent qualities in any field of objects. Thus the 
order and the singularities of a single curve as well as a contact 
of two curves may all be altered by a properly chosen trans­
formation. To be sure the totality of linear systems of curves 
has the permanence required but the objects of this field are 
as vague as they are general. Furthermore it is desirable to 
have a second field of objects so that the theory may present 
something of the nature of duality. 

By the introduction of the class of sets of n points in the 
plane, sets Pn

2, congruent to each other under Cremona 
transformation, we obtain a new field of objects permuted 
under the Cremona group which is in a sense dual to the field 
of linear systems. Moreover the objects of this field are so 
concrete and so easily visualized that some success in the 
development of their invariantive properties may well be 
expected. The definition of this class is as follows: The 
planar set Pn

2 of points (pi, p2, • • •, pn) is congruent to the 
planar set Qn

2 of points (gi, q<i, • • •, qn) if there exists a Cremona 
transformation Cm with p ^ n ^-points in the set Pn

2 and p 
inverse ^-points in the set Qn

2 for which the remaining n — p 
points in either set form n — p copairs of the transforma­
tion Cm. 

The invariance of this class under Cremona transformation 
is an immediate consequence of the definition. For if Pn

2 is 
congruent to Qn

2 under Cm and Qn
2 is congruent to Rn

2 under 
Cm'', then Pn

2 is congruent to Rn
2 under the product Cm'Cm

f''. 
Nevertheless, certain points relating to the definition should 
be emphasized. We note first that, Pn

2 being given, not all 
Cremona transformations are eligible for the formation of the 
class of congruent sets, but only those with not more than n 
F-points, and of these only those whose ^-points are found in 
the set Pn2- This is, to be sure, a limitation, but in applying 
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the operations of any group, we are entitled to prescribe 
any rules which do not contradict properties inherent in the 
elements. Moreover the limitation is not serious, for n 
may be chosen in advance sufficiently large to include 
any desired point set or any desired transformation. 

Again we observe that if, in particular, Cm is a projectivity 
d, the protectively equivalent sets Pn

2 , Qn
2 satisfy the defini­

tion of congruence. This of course must be expected since the 
projective group is a subgroup of the Cremona group. I t 
raises the question, however, as to whether for other Cremona 
transformations, congruence may not mean merely projec­
tivity. I have shown ((23), p. 353) that this can occur in 
only four cases, namely, for sets of 5 points under C% and C$; 
for sets of 7 points under the Geiser C8; and for sets of 8 points 
under the Bertini C17. For each of these cases, the introduc­
tion of a single additional copair destroys the projectivity. 

Finally we observe that congruent point sets are not bi-
rationally equivalent. Consider for example an elliptic cubic 
Ks on a set P6

2 . A quadratic transformation, ^123, with 
P-points (pi, p2, PB), (qi, q*> qs) and copairs (piy q%), (i > 3), 
transforms it into an elliptic cubic Ks on the congruent set 
Q6

2. In the birational transformation thus effected from Ks to 
Kz, the set P 6

2 is not equivalent to the congruent set Q6
2 but 

rather to that set on K3 which consists of the three points 
where the sides of the P-triangle (gi, q2, qs) meet K3 again and 
of the three ordinary points (g4, #5, q<d-

Hence in the congruence of point sets we have a notion 
peculiar to cremonian geometry. I t is clear also that the 
conditions for congruence imply when n = p the conditions 
on the two sets of P-points that the transformation may exist, 
and when n = p + 1 the further conditions for the construc­
tion of the transformation ((23), § 2). This notion originated 
in my own mind through the contrast presented by the two 
algebraic problems of the next section. 

12. Form Problems of Cremona Groups. A proper conic with 
three distinct points marked on it is projectively equivalent 
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to any proper conic with three distinct points on it. We select 
then such a conic N, and establish on it a parameter system t 
such that three given points on N have parameters t = 0, 1, oo. 
Binary quintics, (at)b = 0, then determine on N sets of five 
points. We project four points of such a set into the vertices 
of the reference triangle and the unit point, and the fifth point 
takes the position x (xo, x\, a?2). Corresponding to the various 
orders in which this projection can be made, we get 120 points 
x, a conjugate set under Moore's GW Fundamental regions 
for this group have been given by Slaught(63). Thus an 
ordered binary quintic determines a point x and conversely 
a point x determines a binary quintic to within projective 
modification. An invariant of the quintic is symmetric in the 
roots. Hence the locus of points x for which an invariant of 
the quintic vanishes is necessarily an invariant curve of GW 
The converse of this is also true. The quintic has invariants 
14,18, In of the degrees indicated, and to these there correspond 
invariant curves of 6?i2o, Je, Jvi, Ju of the orders indicated 
with multiple points of orders 2, 4, 6, respectively, at the four 
base points. If the values of the absolute invariants 1%/h2, 
In/h* of the quintic are given, the point x must be on the 
curves J\i\J2 = h/h2, Jis/J<? = Iu/h*- These meet in 
12 X 18— 4 X 4 X 6 = 120 points x outside the base points, 
a conjugate set under GW The form-problem of G120 consists 
in the determination of one of these points x when the values 
of the absolute invariants are given. One point is sufficient, 
since the others are obtained from one by effecting the known 
operations of GW If this one point is obtained, the given 
quintic can be solved by rational processes. For x determines 
the roots t' of a binary quintic which is projective to the 
given quintic with roots t. The determination of a linear 
transformation which sends the known quintic into the re­
quired quintic is a long-known exercise in binary forms. Thus 
the solution of the quintic is reduced to the solution of the 
form-problem of GW I shall now show that the form-problem 
of G120 can be solved in terms of Klein's(64) problem of the A's. 

To invariants of the quintic there correspond invariant 
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curves of Gm; but to irrational invariants of the quintic 
there correspond members of a linear system of curves in-
variant_under GW For example, to the irrational invariant 
12-23-34-45-51 (ij = U — t/) of weight 5 and degree 2 in each 
root there corresponds a cubic curve on the four base points. 
The cubics determined by the 12 conjugates of this irrational 
invariant all lie in the linear system XiDi - } - • • • + A6D6 of 
cubics on the four base points, the simplest linear system 
unaltered by GW Adjoin now the square root of the dis­
criminant A of the quintic, an invariant of degree 8. The 
group reduces to the even 6?6o, the invariants to I±, VA, I\2, 
the invariant curve which corresponds to >A being the six 
lines on the four base points. Also the above linear system 
of cubics separates into two nets 

\0A0 + Xi-^i + ^A2, MO-BO + Mi^i + M2#2, 

each net being invariant under the Cremona GQQ. Indeed 
under Geo the members of the first net experience the linear 
transformations of Klein's group of the A's, a ternary linear 
#60 ; and the second net, Klein's group of the B's which arises 
from that of the A's by replacing e by e2 (e = e2*iIb). The 
invariants K2, K&, K10 of gQ0 of orders 2, 6, 10 must be calcu­
lated in terms of the known invariants of the quintic, and the 
same must be done for three invariant forms X3, L&, L7, linear 
in the B's, and of the degrees indicated in the A's, The 
form-problem of the A's consists of the determination of 
Ao, Ai, A2 when the numerical values of K2, KQ, KIQ are given. 
When this has been done, we find from the known values of 
the forms i 3 , L5, L7 and the Ao, An, A2 the values of B0, B\, B2. 
Knowing A0, A\, A2 and JB0, B\, B2, the coordinates of x are 
easily obtained. Thus the form-problem of the Cremona 6?i2o 
is solved in terms of that of the ^4's. I have given(65) a 
solution of the .4-problem in terms of the binary ikosahedral 
form-problem, and have carried out explicitly all the calcula­
tions necessary for this as well as for the steps outlined above. 
Finally the binary form-problem is solved in terms of elliptic 
modular functions. (See Klein, loc. cit. (63), p. 132.) The 
chief rôle of the cross-ratio group in this procedure for the 
solution of the quintic is to furnish by all odds the most 
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natural reduction to the problem of the A's. I t eliminates at 
one stroke three parameters from the five involved in the 
given quintic. 

I have also discussed(66) the connection of the cross-ratio 
group with the solution of the sextic and found that it corre­
lated well with the current theory. 

These cross-ratio groups are associated respectively with 5 
points in the plane, 6 points in space, etc. I t is of course a 
natural question as to whether there is an analogous theory 
for further sets of points. The case of 6 points in the plane 
is next in order. When we transform as before four of the six 
to the reference triangle and unit point, the other two become 
XQf XI, X2 and y0, y h 2/2. I» each of these there is an unessential 
factor of proportionality. One of these factors is removed by 
requiring that the last coordinate of each shall be the same, 
leaving one factor of proportionality common to the two 
points. Thus PQ2 has acquired the canonical form 

1,0 ,0 1, 1,1 
0, 1, 0 XQ, XI, u 
0, 0, 1 y0, yi, u 

I t is represented by a point P in a linear space 2 4 with coordi­
nates Xo, xi, yo, yi, u. Obviously all protectively equivalent sets 
P 6

2 are represented by the same point P in 2 4 ; and, conversely, 
any point P in 2 4 represents a class of protectively equivalent 
sets PQ2. The ratios of the coordinates of P are absolute 
projective invariants of the set. If, however, a given set P 6

2 

is transformed into the base points, and a fifth and sixth point 
in a different order, a new representative point Pf in 2 4 is 
obtained. The coordinates of P' are rational in those of P , 
and thereby for all possible permutations of P 6

2 we find in S4 

a set of 6! points P conjugate to each other under a Cremona 
(r6!. This is the extension to the larger set of the Moore 
cross-ratio group. I t puts into evidence the projective in­
variants of the set. These when symmetric are the invariants 
of the group. I have developed(67) the theory of this group 
for the set Pn

k of n points in S& and have given a complete 
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system of invariants for P6
2 . Complete systems for further 

sets would be very useful but they are hard to find. 
If to P6

2 in canonical form we add a point 20, 21, u to form 
P72, the same canonical coordinates appear in the set P73 in 
S3, namely: 

zo, Vo, *o, u 0, 0, 0, 1 
xi, yi, zi, u 0, 0, 1, 0 . 
1, 1, 1, 1 0, 1, 0, 0 

1, 0, 0, 0 
These two ordered sets, the one is $2 and the other in S3, are 
called associated. In the general case a set Pn

k is associated 
with a set Pn

n~k~2. Such associated sets are in remarkably 
intimate relation both in a geometric and algebraic way. For 
example, they have the same invariants under Gn!. 

If P 6
2 yielded no more than this G6! it would have no advan­

tage over P6
3 with its cross-ratio (J6!. Let us see then whether 

we cannot obtain a little more from P6
2 . To the geometer 6 

points in the plane always suggest the cubic surface T3 mapped 
from the plane by cubic curves on the six points. The direc­
tions about each of the 6 points map into 6 skew lines—a 
line-six—on the surface. The six conies on 5 of the 6 points 
map into a similar line-six, cutting the first line-six five lines 
at a time. The two line-sixes form a double-six. The 15 
lines on two of the six points map into the remaining 15 lines 
of the surface. In other words, P 6

2 defines a cubic surface 
with an isolated line-six. I t is known, however, that there are 
72 such line-sixes on the surface. They arise as follows. The 
quadratic transformation ^123 sends cubics d on PQ2 into cubics 
C/ on Q6

2. The mapping equations are 

Vi = d(x) = d'ix'), (i = 0, 1, 2, 3). 

Thus the point y on the surface determined by x or x' does 
not change but the line-six determined by the points of Q6

2 is 
that determined at P 6

2 by the sides of the triangle pi, pi, p% 
and the points p±, p6, p6. Hence the passage from P 6

2 to the 
congruent set Q6

2 corresponds on the surface to the passage 
from one line-six to another. Thus there must be 72 protec­
tively distinct sets P6

2 congruent under ternary Cremona 
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transformation to a given set, and these in all possible orders 
correspond in S4 to 72 X 6 ! = 51,840 points P conjugate under 
a Cremona 6r5i840 isomorphic with the group of the lines on a 
cubic surface and furthermore in immediate algebraic relation 
to the surface itself. I have called this the extended group C?6,2 
of P 6

2 ((23), §§ 3, 4). Its invariants are the invariants of the 
cubic surface: Its form-problem can be solved in terms of 
that of Burkhardt's linear group of the F's which in turn can 
be solved in terms of hyperelliptic modular functions of genus 
2 and rank 3. The group 6r6,2 plays the same rôle in the 
determination of the 27 lines on a cubic surface as does the 
cross-ratio group in the determination of the roots of a 
quintic(68). Indeed these two problems, which from the Galois 
point of view present at most a superficial resemblance, can 
be developed in a series of practically identical stages both in 
the algebraic and modular function fields. (See (68), p. 372.) 
This analogy is so perfect as to justify in itself the methods 
here employed. 

The extended group, based as it is on the canonical form of 
the point set, and on congruence of point sets, can be general­
ized immediately to the set Pn

k. The associated sets Pn
k and 

p^n-k-2 n a v e the same extended group. The study of the 
structure of these extended groups is much simplified by the 
fact that they are isomorphic to the corresponding arithmetic 
group of section 4, a linear group gn, k ((63), § 5) with integral 
coefficients, and eventually in a smaller number of variables 
than Gn, *. Except for the sets P6

2 , P72, P8
2, P73, Ps4, the 

number of congruent sets is infinite, and Gn, k is infinite and 
discontinuous. The theory then passes from the algebraic 
field into that of automorphic functions. 

13. Invariants of a Set Pn
k. We define an invariant of a 

set Pn
k under regular Cremona transformation to be an 

algebraic form in the coordinates of each point of the set 
which is symmetric in the n points and which is reproduced to 
within a factor when formed for a congruent set Qn

k. I t is 
therefore an invariant under Gn, &. Since projective sets are 
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congruent also, the invariant must be a sum of terms each of 
which is a product of determinants formed from the coordi­
nates. We say that the product 123-456 formed for P6

2 is an 
irrational invariant, since each point of P 6

2 occurs linearly but 
the symmetry is not present. There are 10 such products and 
they lie in a linear system of irrational invariants of dimension 
4, i.e., all can be expressed linearly with numerical coefficients 
in terms of 5 of them. In 2i° (123 -456)2 we have an invariant 
of P 6

2 under 6?6i but not under the extended group GO, 2. (See 
«*>, §§ 3 ,4 ,5 . ) 

To make this extension consider the meaning of the deter­
minant factors ijk in the products from which invariants are 
formed. The factor ijk vanishes when pi, p,-, pk are on a line. 
This means that the cubic surface mapped from P 6

2 has a 
node. But it also has a node when two of the points coincide 
in a definite direction, or when the six points are on a conic. 
Under the quadratic transformation Ans, the condition 
124 = 0 on PQ2 becomes for Q6

2 the condition that qsf q* coin­
cide, and 456 = 0 becomes the condition that the six points q 
are on a conic. We have then 36 discriminant conditions for 
the set P6

2 , namely, 15 of the type 8 a, which vanishes if pi, pj 
coincide; 20 of the type ô ^ , which vanishes if pi, p3-f pk are 
on a line; and one of the type S, which vanishes if all six are 
on a conic. These discriminant conditions are permuted 
under 6?6,2 like the 36 double-sixes on the cubic surface. 
Consider now the product (h 123-456, where (k = 0 is the 
condition of degree two in each point that the six are on a 
conic. The product is of degree 3 in each point and vanishes 
once for each coincidence but once more for the coincidences 
Ô12, Ô13, Ô23, Ô45, S46, S56, whence it represents a product of the 
9 discriminant conditions S, S123, à^', 5i2, S13, §23; Ö45, 546, 556. 
Such a product is one of 40 similar products conjugate under 

$61840. 

They correspond on the surface to the 40 so-called com­
plexes. By forming such combinations of these products as 
are invariant under 6r5i84o we obtain the invariants of P&2 

under the extended group 6?6,2. They are in effect the in-
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variants of the cubic surface and their complete system is 
known. (See <68), §§ 1, 3.) 

Similarly the invariants under GT, 2 of P72 are the invariants 
of the quartic envelope determined as in § 9 by the seven 
points. Their complete system has not been found, but in­
dividual members can be obtained by symmetrizing a system 
of irrational invariants derived from the type 

^ . 4 W - 3 ^ - 5 6 2 - 5 4 7 - 2 Ï 7 - 3 6 7 . 
This type is of degree 3 for each point, vanishes once for each 
coincidence S# and in addition vanishes for the seven dis­
criminant factors S531, • • •, S367. Here again the 63 discrim­
inant factors for the set P 7

2 are the factors of the discriminant 
of the quartic envelope. 

For larger sets beyond P 8
2 in the plane the number of 

discriminant conditions is infinite and the symmetrizing proc­
ess under Gn, k can no longer be used. Nevertheless in some 
of these infinite cases algebraic invariants of Gn, k do exist. 
For example, on P92 there is a unique cubic curve, and the 
invariants S, T of this cubic are invariants of P 9

2 under regular 
Cremona transformation. For P102 the condition that the 10 
points be on a cubic curve is a similar invariant. Other 
instances are for P 9

3 the condition that the 9 points lie on a 
nodal quadric, and for P9

4 the condition that the 9 points lie 
on a rational quintic curve. These and other examples are all 
suggested by geometric considerations. On the algebraic side, 
there is no evidence that the invariants which exist for the 
subgroup Gn\ can be so combined as to form invariants of 6rn, & 
when Gn, k is infinite. If the algebraic invariants fail, auto-
morphic functions of the coordinates may replace them. 

E. APPLICATIONS TO MODULAR FUNCTIONS 

14. Modular Functions of Genus Three. Our notion of a 
modular function attached to a general algebraic curve is 
dependent of course upon our definition of the moduli of the 
curve. These may be defined from the algebraic point of 
view as a set of 3p — 3 independent projective absolute in­
variants of the normal curve C2p~~2 in Sp_i upon which the 
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given curve is mapped by means of its canonical adjoints. 
They may also be defined from the transcendental point of 
view as the constants co# (i, j = 1, • • •, p) which occur in the 
periods of the normalized integrals of the first kind attached 
to the curve. In the latter case, the p(p + l)/2 quantities 
o)ii = <*>ji are connected by certain relations when p ^ 4 (thus 
far known only when p = 4) so that only Sp — 3 are inde­
pendent. In the first case one would naturally define a 
modular function to be an algebraic function of the algebraic 
moduli; in the second case an analytic function of the eu»,-. 
But to avoid the vagueness consequent to too great generality, 
M fait) is restricted to be first a uniform function of the co#, 
and second to be invariant under such integral transformations 
of the periods as form a subgroup of finite index under the 
totality of such transformations. I t has thereby under the 
total group a finite number of conjugate functions and is 
therefore an algebraic modular function. Similarly only such 
algebraic moduli and such algebraic functions of these moduli 
are admitted as are uniform functions of co#. Since the number 
of their conjugates is finite, each must be unaltered by a 
subgroup of finite index of the type mentioned. 

The normal curve of genus 3 is the plane quartic which I 
take, for the moment, as an envelope of class 4. I t has 288 
Aronhold sets of 7 double points, sets P72. If such a set be 
taken in canonical form, its representative point P in S6 has 
coordinates XQ, XI, yo, y\, ZQ, Z\, U. The ratios of these 7 co­
ordinates are algebraic moduli of the curve with precisely 7! 288 
conjugate value systems which are conjugate also under the 
extended group 6?7f 2. All of the numerous relations among 
the 28 double points of C4 are consequences of the statement 
that the 288 Aronhold sets P72 are congruent under Cremona 
transformation. J. R. Conner(57) has derived some of these 
transformations from a different point of view. 

If C4, now a point curve, be mapped by cubics on the six 
contacts of a contact cubic, it becomes a sextic curve in space, 
the locus of nodes of quadrics of a net on 8 base points and 
the plane sections of this sextic furnish the contacts of a 
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system of contact cubics. In general a set P 8
3 is congruent to 

infinitely many protectively distinct sets ; but if P 8
3 is the set 

of 8 base points of a net of quadrics, I have shown ((23), p. 377 
(45)) that it is congruent to only 36 such sets, each corre­
sponding to one of the 36 systems of contact cubics. In each 
set J V there are 8 sets P73 and thus there arise 8 X 36 sets 
P 7

3 which are the associated sets of the 288 Aronhold sets 
P7

2 . The relations among these 36 sets P 8
3 as well as the 

conditions on a particular set are all implied by their con­
gruence properties. 

The irrational invariant of P72 found in § 13 is an algebraic 
modular function. I t appears ((23), § 8) that it is one of 135 
conjugates such that each one of the 135 can be linearly 
expressed in terms of 15 which themselves are linearly inde­
pendent. Since these 15 are rational functions of only 6 
moduli, they are related further, and it turns out that they 
satisfy a system of 63 conjugate cubic relations. I t may be 
shown that these linear and cubic relations are sufficient to 
define the system of irrational invariants as functions of the 
6 moduli. I shall now show how to obtain expressions for 
these 15 modular functions as uniform functions of coij. Since 
we can express the six moduli rationally in terms of the 15 
functions, we shall thereby have expressions for the algebraic 
moduli as uniform functions of the transcendental moduli. 

Following a suggestion of Klein, Wirtinger(69) has general­
ized the Kummer surface defined by the theta functions of 
genus 2 into a p-w&y Mv in 82-1 of order p ! 2P~1 defined by 
the theta functions of genus p. For p = 3, this is a 3-way 
M3

24 of order 24 in £7. The definition is as follows. The 
squares of the 64 odd and even thetas for p = 3 are even 
functions of the second order and zero characteristic so that 
only 8 are linearly independent. Using such a set of 8 as 
homogeneous coordinates of a point in S7 then, as the variables 
u = Ui, ti2y Us change, the point in S7 runs over the M324. A 
point of ilf3

24 is thus determined by =L u\ in particular the 64 
half-periods (including the zero half-period) determine 64 
four-fold points on ilf3

24. This Msu is transformed into itself 
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by a collineation G^ whose elements are defined parametrically 
by u' = u + ^ P . The 8 theta functions are connected by a 
system of 70 quartic relations and Wirtinger(70) has proved 
that all other relations among them are a consequence of these ; 
in other words, M%M is the complete intersection of 70 quartic 
spreads in S7. But, contrary to the case when p = 2, there 
are here 8 cubic relations on the functions, so that 64 of the 
70 quartic relations are merely a cubic relation multiplied 
by one of the 8 functions. I wish to establish these cubic 
relations. 

I t is not difficult to find for coordinates 8 combinations of 
the theta squares, say Xijk of weights i, j , h = 0, 1 with the 
following properties. On adding one half-period the Xijk with 
odd first weight i change sign (to within a factor common to all), 
on adding a second half-period those with odd second weight 
change sign, and similarly for the third. Thus, there arises a 
collineation G$ of changes of sign. On adding another half-
period the first weights i = 0, 1 interchange; similarly for the 
second, and for the third. Thus there arises a collineation G$ 
of permutations of the X which combines with 6?8 to yield GW 
Assuming now a general cubic relation, we obtain from it, by 
using G8, 8 relations, and combine these to obtain a simple 
relation with only 15 undetermined coefficients ai, •••, an. 
To this one we apply G%, and get the 8 distinct cubic relations. 
The left members of these appear at once as the 8 first de­
rivatives of a quartic relation with coefficients a\, • • •, aio. 
Hence the Wirtinger ilf3

24 is the manifold of double points on a 
unique quartic spread F4 in $7. To determine the coefficients 
a\, • • •, ai5 of FA we observe that one of the 63 involutions in 
6?64 has two fixed S3' s, each of which cuts ilf3

24 in 16 points 
determined by specific quarter-periods, and permuted in the 
£3 by a 6ri6. Hence this S3 cuts FA in a Kummer surface whose 
16 nodes are determined by the quarter-periods, and whose 
coefficients are linear in a\, • • •, ai5. But the coefficients of a 
Kummer surface satisfy a cubic relation(71), and thus we find 
that ai, • • •, an satisfy 63 cubic relations and therefore are 
proportional to the 15 linearly independent irrational invari-
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ants of P72. Moreover the expressions for the coefficients of 
the Kummer surface in terms of the coordinates of a node are 
known(71), and, since here the coordinates of a node are the 
values of X^ for a definite quarter-period, the values of the 
coefficients a\, • • •, a^ as uniform functions of co# are deter­
mined. In turn the expressions for the irrational invariants 
of P72 as modular functions are obtained. 

We have already noted that when P 8
3 is a set of 8 base 

points of a net of quadrics, the number of sets congruent to 
it is not infinite as it is for the general set P8

3 . This phenom­
enon occurs in other cases. Indeed if sEA(u) is the unique 
elliptic quartic on P 8

3 with elliptic parameter u such that 
u{1) + ^(2) + w(3) + i£(4) = 0 (mod coi, co2) is the coplanar con­
dition, then any set P 8

8 for which ui+ • • • + % = co/r (r an 
integer) has this property. Also in the plane any set P 9

2 

which has a similar sum on the unique elliptic cubic through 
the points has the property. This includes for r = 1 the 9 
base points of a pencil of cubics and for r = 2 the 9 nodes of 
an elliptic plane sextic. The same peculiarity appears for the 
ten nodes of a rational plane sextic, and for the ten nodes of a 
Cayley symmetroid. The reason is that the theorem which 
states that congruent sets are not projective is not necessarily 
valid for special point sets. Indeed the theorem was proved 
((23), p. 355 (7)) on the hypothesis that the set P n * was special 
to the extent that its n points were taken on an elliptic norm-
curve, but the assumption then was made that their elliptic 
parameters satisfied no linear relation with integral coefficients, 
an assumption not fulfilled in the cases mentioned above. 

15. Modular Functions of Genus Four. Consider first 
the set P102 of nodes pi, • • -, pw of the rational sextic. 
The Bertini involution B with P-points at pi, •••, p8 has 
fixed points p§, pio whence Pi0

2 is congruent to itself under 
B. Moreover under the transform of B by any quadratic 
transformation, such as Aijk, Pi0

2 is congruent to itself. Hence 
Pio2 is self-congruent under the (18°) involutions B with P-
points at Pio2 and under the conjugates of these involutions 
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in 010,2. The element of the arithmetic group 0iO, 2 which 
corresponds to B has coefficients 

17 - 6 - 6 • • • - 6 0 0 
6 - 3 - 2 . - . - 2 0 0 
6 - 2 - 3 - . . - 2 0 0 

6 - 2 - 2 - . . - 3 0 0 
0 0 0 • . . 0 1 0 
0 0 0 ••• 0 0 1 

and therefore reduced modulo 2 is congruent to the identity. 
Any transform of B is similarly reducible to the identity. I t 
may be shown(30) that B and its conjugates generate the 
subgroup 010, 2(2) of elements of gw, 2 which are congruent to 
the identity modulo 2. Moreover 0io, 2(2) is an invariant sub­
group of 0io, 2 of index 10 ! 213 • 31 • 51, whence this is the number 
of projectively distinct ordered PiVs congruent to P i 2 ; or, 
disregarding the ordering, the number of projectively distinct 
types of rational sextics which can be derived from a given one 
is precisely 213 • 31 • 51. Two years earlier than the date (1919) 
of this result, Miss Hilda Hudson(72) had proved that if a 
discriminant condition vanished for the sextic, then the sextic 
could be transformed into one of only 5 kinds, a fact related 
to the more precise one above. 

The factor group of gio, 2(2) under 0iO, 2 is isomorphic with 
that subgroup of the odd and even thetas for p = 5 which 
has an invariant even characteristic (loc. cit. (30), p. 248 (9)). 
In other words the projectively distinct types of congruent 
sextics are permuted under Cremona transformation according 
to a theta modular group of the type mentioned. 

The set Pi3
0 of ten nodes of a symmetroid has properties 

much like the set Pi% of nodes of a rational sextic. In this 
case, however, the symmetroid is unaltered not merely by the 
0io, 3(2) but by other transformations so that only 28-51 pro­
jectively distinct symmetroids can be obtained from a given 
one by regular Cremona transformation and these types are 
permuted according to the entire theta modular group for 
p = 4. The dependence of these two configurations of nodes 
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upon theta modular functions thus foreshadowed by the oc­
currence of these factor groups is confirmed by a result obtained 
by Schottky(73), who proved that by combining theta mod­
ular functions of genus four, the coordinates of a set of ten 
points are obtained which have a characteristic property of the 
nodes of the symmetroid. His method is not adequate, how­
ever, to solve the inverse problem of finding the curve or 
curves of genus 4 thus attached to a symmetroid. Moreover 
the rational sextic and the symmetroid mutually determine 
each other in the following fashion. The plane rational sextic 
is conjugate to a rational sextic in space, the line sections of 
the one and the plane sections of the other being apolar binary 
forms. The symmetroid is the quartic locus of planes which 
cut the space sextic in catalectic binary sextics (i.e., sextics 
reducible to a sum of three sixth powers), the nodal planes 
being those which cut the sextic in cyclic binary sextics (i.e., 
reducible to two fifth powers). Thus given the plane sextic 
there is one protectively definite symmetroid ; given the sym­
metroid there are two plane sextics(74). I t is this intimate 
connection between functions of genus 4 and genus 5 which I 
am attempting to unravel in articles which are appearing in 
abstract form in current numbers of the PROCEEDINGS OF 

THE NATIONAL ACADEMY(75). 

I have remarked that if algebraic invariants of Gn,k are 
lacking, automorphic functions may be available. I shall now 
indicate how perhaps such functions may be constructed for 
the set Pio2 of nodes of a sextic. Since the sextic is congruent 
to only a finite number of projectively distinct types, it is 
unaltered by an infinite discontinuous Cremona group, namely 
the subgroup G of fto, 2 which is isomorphic to the subgroup 
gio, 2(2) of #10, 2. On the sextic with binary parameter r, G 
determines a binary group of the form r' = (ar + b)/(cT + d). 
Let Ci be the cubic curve in variables x on the 9 nodes 
other than p^ Transforming the Ci by AJU we get either 
cubics Ci or elliptic quartics with a node at pr and ps and 
simple points at the other points p. Divide such a quartic 
by its canonical adjoint prps%, a rational curve determined by 
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points of Pio2, and the quotient thus obtained is still homo­
geneous of degree 3 in x. If then we take all the elliptic 
transforms of a given C by 610,2 and divide each by its canonical 
adjoint, we obtain an infinite sequence of such fractional 
terms. But these terms must be separated into 527 classes 
such that the terms in one class arise from one term of the 
class by those operations of 610,2 which are in G, since it is 
only for such operations that the set of nodes remains fixed. 
Divide each of the terms in a class by the product T of the 
ten quadratics qi in r determined by the nodal parameters. 
Consider now the value of such a term when for x we substitute 
the parametric coordinates of a point r on the sextic. A term 
like d has for numerator a product of 9 quadratics qi divided 
by IT and becomes X»-/g» where X* is numerical; an elliptic 
quartic term has for numerator irqrqSi and for denominator 
Trqrqsqrs, where qrs is the pair of further parameters of points 
where the canonical adjoint cuts the sextic outside the nodes, 
whence it is \rs/qrs- In other words the terms all reduce to 
the inverses of those binary quadratics cut out on the sextic 
by the jF-curves of all the transformations of 6ri0f 2. For the 
terms in a particular class we determine the numerical factors 
X so that these terms are conjugate under G and finally sum 
the 2jth powers of the terms in each class. Thus for every 
value of j we have 527 series which formally are pseudo-
invariant under G and satisfy for j = 2 the convergence 
criterion of Poincaré. Assuming that not all of these vanish 
for all values of j , then the ratio of any two for the same j 
will be automorphic under G provided G is a discontinuous 
binary group of the type for which the series of Poincaré 
converge. On returning to the corresponding series in x, we 
should then have automorphic functions, homogeneous of 
degree 0 in xo, X\, %%, which converge for a region of values x 
which includes at least certain regions on the sextic. I have 
some information concerning the group G, but not enough to 
validate entirely the process outlined above. In passing from 
one sextic to a congruent sextic, the 527 series mentioned 
would be permuted like the remaining 527 even theta functions 
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for p = 5 under the group which leaves one such function 
unaltered. Similar developments are possible for the sym-
metroid. If this procedure is valid, we should have functions 
of two or three variables automorphic under discontinuous 
groups of far more complex character than any hitherto 
considered. 

16. The Arithmetic Group. Dickson Groups. I t must be 
clear from the last section that the information concerning the 
Cremona group Gn,k obtained from the isomorphic linear group 
gn,k is of considerable importance. This linear group with 
integer coefficients will have, for every value of the positive 
integer a, an invariant subgroup (necessarily of infinite order) 
which consists of those elements congruent to the identity 
modulo a. The factor group which in concrete form is merely 
the elements of gntJe reduced modulo a is necessarily finite, 
I have made(76) a study of this factor gn, k (a) for a = 2. I t 
appears that 16 cases are to be distinguished according as 
n, k = 0, 1, 2, 3 (mod 4). In all of these 16 cases, it turns 
out that this factor group either is itself a simple group, or 
contains an invariant abelian subgroup of low order whose 
factor group is simple. The simple groups thus obtained are 
of known types. Either they are the total group of the odd 
and even thetas for some value of p or the simple subgroup of 
this total group which leaves unaltered either an odd or an 
even function. In the notation of Dickson's Linear Groups, 
these are respectively the simple groups A(2m, 2), FH(2m, 2), 
and S H (2m, 2). 

The question as to the nature of these factor groups for 
larger values of a, and in particular for values a = pn (p a 
prime), has not been touched. We remark of course that 
gnik has an invariant linear form and an invariant quadratic 
form, so that the factor groups are either the linear groups of 
Dickson with a quadratic invariant or subgroups of them. 
In the latter case, it may be possible to obtain new series of 
groups; and even in the former case we should have some 
new light on the known group and a new application for it. 
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Investigations along these lines may advance the general 
problem of an explicit solution for the totality of types of 
Cremona transformation with a given number of i^-points 
—a problem which amounts merely to asking for the coeffi­
cients fi, Sj, aik, m of the general element of the arithmetic 
group gnik. 

One would also naturally expect to find that the simpler 
transformations congruent to the identity modulo a would 
have interesting geometric properties comparable perhaps to 
those of the Bertini involution for a = 2. I t may well be 
that in this way other sets of points not less striking than the 
nodes of a rational sextic will be discovered. 
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