THE COMPLETE EXISTENTIAL THEORY OF HURWITZ'S POSTULATES FOR ABELIAN GROUPS AND FIELDS*

BY B. A. BERNSTEIN

1. Introduction. Hurwitz has proposed sets of postulates for abelian groups and fields.[†] If F', F'', F_n denote his sets for denumerable, continuous, and finite fields respectively, G', G'', G_n the corresponding sets for abelian groups, then I have proved in another paper[‡] the following theorem.

THEOREM A. Postulate-sets F', F'', G', G'', G_n (n > 1) are each completely independent; postulate-set F_n is completely independents when, and only when, n exceeds 2 and is a power of a prime.

The object of this note is to investigate postulate-set F_n further, and to prove the following theorem, which, together with Theorem A establishes the *complete existential theory* of each of Hurwitz's six postulate-sets for abelian groups and fields.

THEOREM B. For postulate-set F_n , when n exceeds 2 and is not a power of a prime, there exists no system having the character (+++++++), but there exist systems having all the other characters; when n = 2 there exist no systems having the characters (-+++-+) and (-+-+-+), but there exist systems having all the other characters.

2. Hurwitz's Postulates F_n for Finite Fields. For finite fields Hurwitz's postulates are as follows (K, \oplus, \odot) being undefined): (A_1) If $a, b, c, a \oplus b, c \oplus b$, and $a \oplus (c \oplus b)$ belong to K, then $(a \oplus b) \oplus c = a \oplus (c \oplus b)$.

^{*} Presented to the Society April 8, 1922.

[†] W. A. Hurwitz, *Postulate-sets for abelian groups and fields*, Annals of Mathematics, (2), vol. 15 (1913), p. 93.

[‡] On complete independence of Hurwitz's postulates for abelian groups and fields, Annals of Mathematics, (2), vol. 24 (1922).

[§] See E. H. Moore, Introduction to a form of general analysis, New Haven Mathematical Colloquium, Yale University Press, p. 82.

- (A₂) If a and b belong to K, then there is an element x of K such that $a \oplus x = b$.
- (M_1) If a, b, c, $a \odot b$, $c \odot b$, and $a \odot (c \odot b)$ belong to K, then $(a \odot b) \odot c = a \odot (c \odot b)$.
- (M_2) If a and b belong to K, and $a \oplus a \neq a$, there is an element x of K such that $a \odot x = b$.
- (D) If a, b, c, $a \odot b$, $a \odot c$, $b \oplus c$, $(a \odot b) \oplus (a \odot c)$ belong to K, then $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$.
- (N_n) K contains n > 1 elements.*

3. Proof of Theorem B. The proof of Theorem B is obtained with the help of the table below. \dagger

(1) Systems 1-32 of the table have the characters $(\pm\pm\pm\pm)$ for F_n .

(2) Let 1'-32' be the systems obtained from 1-32 by substituting (a) the class of *least positive residues modulo n* for the class of integers and (b) the *least positive residue modulo n of* a + b, ab, a - b for a + b, ab, and a - b respectively, except that $a^2 + (b - 1)^2$ in 16 is left unchanged. Then when n > 2, systems 2'-32' will have the characters $(\pm \pm \pm \pm \pm)$ except (++++++); when n = 2, systems 1'-9', 11'-20', 22'-32'will be systems having all the characters $(\pm \pm \pm \pm \pm)$ except (-+++-+) and (-+-+-+).

(3) When n > 2 and not a power of a prime there exists no field.

(4) When n = 2 there exists no system having the character (-+++-+). For, since postulates (A_1) and (D) have to be contradicted, and (A_2) satisfied, $a \oplus b$ must be defined by the table

$$\begin{array}{c|c} \oplus & 0 & 1 \\ \hline 0 & 1 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

Further, since postulates (M_1) and (M_2) have to be satisfied,

 \dagger This table may also be used conveniently in the proof of Theorem A.

398

^{*} Postulate-sets F' and F'' are obtained from set F_n by substituting for (N_n) respectively: (N') K is countably infinite, (N'') K has the cardinal number of the continuum. Sets G_n , G', G'' are obtained from F_n , F', F'' respectively by omitting (M_1) , (M_2) , and (D).

1922.]

 $a \odot b$ must be defined by one or the other of the tables:

<u> </u>	0	1	\odot	0	1
0	1	0	0	0	1
1	0	1	1	1	0

That is, we must have either

 $a \oplus b = b + 1 \pmod{2}$, $a \odot b = a + b + 1 \pmod{2}$ or else

 $a \oplus b = b + 1 \pmod{2}$, $a \odot b = a + b \pmod{2}$. But for either case postulate (D) would be satisfied.

(5) That when n = 2 there is no system having the character (-+-+-+) I have shown in the paper cited above.

This completes the proof of our theorem.

No.	Character	K	$a \oplus b$	$a \odot b$
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ $	$(++++-) \\ (++++) \\ (++++) \\ (++++) \\ (++++) \\ (++++) \\ (++++) \\ (++++) \\ (++++) \\ (++++) \\ (+++-+) \\ (++-++) \\ (++-+-+-) \\ (++-+-+-) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++-++) \\ (++++$	Integers* " " " " " " " " " " " " " " " " " " "	a+b $a+b$ $a+b$ $a+b$ $a+b$ $a+b$ $a+b$ $a+b$ $a+b+1$ $b+1$ $b+1$ 0 $b+1$ 0	$\begin{array}{c} ab \\ a + b \\ 0 \\ b \\ a + b \\ 1 \\ a + b \\ a + b \\ a + b \\ b + 0/a \\ 0 \\ a/0 \\ b \\ b \end{array}$
15 16 17 18 19 20 21	$(-+-++-) \\ (+++-) \\ (++) \\ (+-+) \\ (+-+) \\ (+-+++) \\ (+-++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++) \\ (+-+++$	 	$\begin{vmatrix} b \\ b \\ -\frac{0}{a^2 + (b - 1)^2} \\ a \\ -b \\ 0 \\ b \\ -b \\ a \\ -b \end{vmatrix}$	b a $a + 1$ 1 $b + 1$ $a - b$
22 23 24 25 26 27 28 29 30 31 32	$\begin{pmatrix}++\\ ++-\\ (-++-)\\ (+-+-)\\ (+)\\ (-+)\\ (-+)\\ (+)\\ (+)\\ (+)\\ (+-)\\ (+-)\\ (+-)\\ (+-)\\ (+)\\ ()\\ ($		$ab + a \\ 1 \\ b + 1 \\ ab + a \\ a + 1 \\ 0 \\ b + 1 \\ a + 1 \\ b + 0/a \\ ab + a \\ a + 1$	$ \begin{array}{c} a + b \\ b + 0/a \\ b + 0/a \\ 0 \\ a + 1 \\ a + 1 \\ b + 0/a \\ b + 1 \\ a + 1 \end{array} $

Systems Having the Characters $(\pm \pm \pm \pm \pm)$ for F_n

* Positive, negative, and 0.

THE UNIVERSITY OF CALIFORNIA