THE COMPLETE EXISTENTIAL THEORY OF HURWITZ'S POSTULATES FOR ABELIAN GROUPS AND FIELDS*

BY B. A. BERNSTEIN

1. Introduction. Hurwitz has proposed sets of postulates for abelian groups and fields. \dagger If $F^{\prime}, F^{\prime \prime}, F_{n}$ denote his sets for denumerable, continuous, and finite fields respectively, $G^{\prime}, G^{\prime \prime}, G_{n}$ the corresponding sets for abelian groups, then I have proved in another paper \ddagger the following theorem.

Theorem A. Postulate-sets $F^{\prime}, F^{\prime \prime}, G^{\prime}, G^{\prime \prime}, G_{n}(n>1)$ are each completely independent; postulate-set F_{n} is completely independent \S when, and only when, n exceeds 2 and is a power of a prime.

The object of this note is to investigate postulate-set F_{n} further, and to prove the following theorem, which, together with Theorem A establishes the complete existential theory§ of each of Hurwitz's six postulate-sets for abelian groups and fields.

Theorem B. For postulate-set F_{n}, when n exceeds 2 and is not a power of a prime, there exists no system having the character $(++++++)$, but there exist systems having all the other characters; when $n=2$ there exist no systems having the characters $(-+++-+)$ and $(-+-+-+)$, but there exist systems having all the other characters.
2. Hurwitz's Postulates F_{n} for Finite Fields. For finite fields Hurwitz's postulates are as follows $(K, \oplus, \odot$ being undefined): $\left(A_{1}\right)$ If $a, b, c, a \oplus b, c \oplus b$, and $a \oplus(c \oplus b)$ belong to K, then $(a \oplus b) \oplus c=a \oplus(c \oplus b)$.

[^0]（ A_{2} ）If a and b belong to K ，then there is an element x of K such that $a \oplus x=b$ ．
（ M_{1} ）If $a, b, c, a \odot b, c \odot b$ ，and $a \odot(c \odot b)$ belong to K ， then $(a \odot b) \odot c=a \odot(c \odot b)$.
（ M_{2} ）If a and b belong to K ，and $a \oplus a \neq a$ ，there is an ele－ ment x of K such that $a \odot x=b$ ．
（D）If $a, b, c, a \odot b, a \odot c, b \oplus c,(a \odot b) \oplus(a \odot c)$ belong to K ，then $a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c)$ ．
（ N_{n} ）K contains $n>1$ elements．＊
3．Proof of Theorem B．The proof of Theorem B is obtained with the help of the table below．\dagger
（1）Systems 1－32 of the table have the characters （土士士土土一）for F_{n} ．
（2）Let $1^{\prime}-32^{\prime}$ be the systems obtained from 1－32 by sub－ stituting（a）the class of least positive residues modulo n for the class of integers and（b）the least positive residue modulo n of $a+b, a b, a-b$ for $a+b, a b$ ，and $a-b$ respectively，except that $a^{2}+(b-1)^{2}$ in 16 is left unchanged．Then when $n>2$ ， systems $2^{\prime}-32^{\prime}$ will have the characters（ $\pm \pm \pm \pm \pm+$ ）except （ ++++++ ）；when $n=2$ ，systems $1^{\prime}-9^{\prime}, 11^{\prime}-20^{\prime}, 22^{\prime}-32^{\prime}$ will be systems having all the characters（ $\pm \pm \pm \pm \pm+$ ）ex－ cept（ -+++-+ ）and（ -+-+-+ ）．
（3）When $n>2$ and not a power of a prime there exists no field．
（4）When $n=2$ there exists no system having the character $(-+++-+)$ ．For，since postulates $\left(A_{1}\right)$ and（ D ）have to be contradicted，and（ A_{2} ）satisfied，$a \oplus b$ must be defined by the table

\oplus	0	1
0	1	0
1	1	0

Further，since postulates（ M_{1} ）and（ M_{2} ）have to be satisfied，

[^1]$a \odot b$ must be defined by one or the other of the tables：

\odot	0	1
0	1	0
1	0	1

\odot	0	1
0	0	1
1	1	0

That is，we must have either

$$
a \oplus b=b+1(\bmod 2), \quad a \odot b=a+b+1(\bmod 2)
$$

or else

$$
a \oplus b=b+1(\bmod 2), \quad a \odot b=a+b(\bmod 2)
$$

But for either case postulate（ D ）would be satisfied．
（5）That when $n=2$ there is no system having the character $(-+-+-+)$ I have shown in the paper cited above．

This completes the proof of our theorem．
Systems Having the Characters（ $\pm \pm \pm \pm \pm 一$ ）for F_{n}

No．	Character	K	$a \oplus b$	$a \odot b$
1	$(++++$＋+ ）	Integers＊	$a+b$	$a b$
2	$(++++--)$	＂	$a+b$	$a+b$
3	$(+++-+-)$	،	$a+b$	0
4	$(++-++-)$	＂	$a+b$	
5	$(+-++$＋+ ）	＂	a	$a+b$
6	$(-++++-)$	،	b	$a+b$
7	$(+++---)$	＂	$a+b$	1
8	$(++-+--)$	＂	$a+b$	$b+1$
9	$(+-++--)$	＂	0	$a+b$
10	$(-+++--)$	＂	$a-b$	$a+b$
11	$(++--+-)$	＂	$a+b+1$	$b+0 / a$
12	$(+-+-+-)$	＂	0	0
13	$(-++-+-)$	＂	$b+1$	$a / 0$
14	$(+--++-)$	＂	0	b
15	（ -+-++- ）	＂	b	b
16	（－－＋＋＋－）	＂	$b+\frac{0}{a^{2}+(b-1)^{2}}$	a
17	（＋十一－－－）	＂	$\begin{gathered} a^{2}+(b-1)^{2} \\ a+b \end{gathered}$	$a+1$
18	（ + ＋＋－－－$)$	＂	0	1
19	（ -++--- ）	＂	$b+1$	1
20	$(+--+--)$	＂	0	$b+1$
21	（ -+-+-- ）	＂	$a-b$	$a-b$
22	（ - ＋＋＋－－	＂	$a b+a$	$a+b$
23	$(+---+-)$	＂	1	$b+0 / a$
24	$(-+-\cdots+-)$	＂	$b+1$	$b+0 / a$
25	（－－＋－＋－）	＂	$a b+a$	0
26	$(---++-)$	＂	$a+1$	b
27	（ + －－－－－	＂	0	$a+1$
28	$(-+-$－－$)$	＂	$b+1$	$a+1$
29	（－－＋－－－）	＂	$a+1$	$\stackrel{a}{a}$
30	（－－－－＋－）	＂	$b+0 / a$	$b+0 / a$
31	（－ー－＋－－）	＂	$a b+a$	$b+1$
32	（－ーーーー－）	＂	$a+1$	$a+1$

[^2]
[^0]: * Presented to the Society April 8, 1922.
 \dagger W. A. Hurwitz, Postulate-sets for abelian groups and fields, Annals of Mathematics, (2), vol. 15 (1913), p. 93.
 \ddagger On complete independence of Hurwitz's postulates for abelian groups and fields, Annals of Mathematics, (2), vol. 24 (1922).
 § See E. H. Moore, Introduction to a form of general analysis, New Haven Mathematical Colloquium, Yale University Press, p. 82.

[^1]: ＊Postulate－sets F^{\prime} and $F^{\prime \prime}$ are obtained from set F_{n} by substituting for （ N_{n} ）respectively：（ N^{\prime} ）K is countably infinite，（ $N^{\prime \prime}$ ）K has the cardinal number of the continuum．Sets $G_{n}, G^{\prime}, G^{\prime \prime}$ are obtained from $F_{n}, F^{\prime}, F^{\prime \prime}$ respectively by omitting $\left(M_{1}\right),\left(M_{2}\right)$ ，and（ D ）．
 \dagger This table may also be used conveniently in the proof of Theorem A ．

[^2]: ＊Positive，negative，and 0.
 The University of California

