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ON KUMMER'S MEMOIR OF 1857 CONCERNING 
FERMAT'S LAST THEOREM* 

BY H . S. VANDIVER 

1. Introduction. In a previous paper under the same title,f 
the writer considered an article by Kummer,{ and pointed 
out that the argument there used for proving certain results 
regarding the equation 

(1) xk + yK + zx = 0, 

where x, y and z are integers and X is an odd prime, is deficient 
and incorrect in several respects. Kummer attempts to prove 
four theorems which in my first paper were numbered I to IV. 
I pointed out that the proofs of Theorems I and IV are in
complete, and that the proofs of Theorems I I and I I I are 
inaccurate. In the present paper additions to and modifica
tions of Kummer's arguments will be given, by means of which 
the demonstrations Theorems I and IV will be completed. 

2. Proof of Theorem I. Assume that hi is the first factor of 
the class number of the field 0(a) , a being a primitive Xth 
root of unity, 

7c=0 

, . 1(1- a*)(l - on) 
6{a) = \ ( l - « ) ( l - < 0 ' 

where 7 is a primitive root of X, and ju = (X — l)/2; then 
Kummer's Theorem I may be stated as follows. 

If hi is divisible by X but not by X2, then one and only one 
Bernoulli number Bv in the set Bi, i — 1, 2, • • -, /x — 1, is 
divisible by X. If under this assumption we also have Jh = 0 
{mod X), &2 being the second f actor of the class number of 0(a) , 
then Ev(oc) is the \th power of a unit in Q{a). 

* Presented to the Society October 30, 1920. 
t PROCEEDINGS OF THE NATIONAL ACADEMY, vol. 6, No. 5, pp. 266-69 

(May, 1920). 
% MATHEMATISCHE ABHANDLUNGEN OF THE BERLIN ACADEMY, 1857, 

pp. 41-74. 
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To complete Kummer's proof it is necessary to prove only 
the first statement in the theorem. Assume X > 5. In 
another paper* the writer has given the relation 

(2) h - II X(~ 1 ) ( ^ ) ? ( 8 " + 1 ) / 2 ("»d X'), 
( » = 1,3, • • • , X - 2 ) . 

We shall now show that the assumption that two or more of 
the JB'S in the set 2?,-, i = 1, 2, • • -, fi — 1, are divisible by X 
leads to the relation h = 0 (mod X2) which will yield the 
proof desired, as it is known f that if h = 0 (mod X) then at 
least one of the B's is divisible by X. 

Assume that Ba = Bb ^ 0 (mod X), where a and b are each 
included in the set 1, 2, • • -, \x — 1. KummerJ has shown that 

h= ( _ i ) * M i î t * L ( m o d x ) , 
C C ~\- KjJL 

where h is an integer and c is not a multiple of JU, and where 
A > 3. This gives 

1 1; (*x2+i)/2~(*+i)/2 l m o a A ; ' 
and if (s + l)/2 = a, then 5 is included in the set 1, 3, 5, • • • 
A — 2, and the above congruence gives 

J5(SA2+I)/2 = 0 (mod X). 
Similarly 

B(«lX«+i)/2 = 0 (mod X), 

where (si + l)/2 = b. Applying these relations to (2), we 
obtain h = 0 (mod X2), and Theorem I is proved, as the 
remainder of the proof as set forth by Kummer, is, in my 
opinion, rigorous. 

3. Proof of Theorem IV. We proceed to Kummer's fourth 
theorem: 

THEOREM IV. If hi is divisible by X, but not by X2, and P is 
an ideal in 0(a) , such that Px is the principal ideal (F(a)), 

* This BULLETIN, vol. 25, p. 460, relation (8) for a = 2. 
t Vandiver, ibid., p. 461. 
t CRELLE, vol. 41, p. 368. 
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Bv = 0 (mod X), v < ix, then P is or is not a principal ideal 
according as 

dox-2' log F(e') n , n , A.s 
dvXX - 0 or # 0 (mod X). 

In this statement, the notation d<f~2v means that the func
tion F(ev) is to be differentiated X — 2v times with respect to 
v, and zero substituted for v in the result. The letter e denotes 
the Napierian base. 

In my first note two criticisms of Kummer's proof of this 
theorem were made. I «shall here modify his argument so as 
to dispose of the difficulties in question, and consequently 
complete the demonstration. The first of my criticisms re
ferred to formula (A) on page 53 of Kummer's memoir. The 
number \[/r(ot) which appears there is defined in the eleventh 
line from the bottom of the page as the product of certain 
ideal factors, but this decomposition is proved to hold only 
for the case where \f/r(cx) contains ideals of degree not higher 
than the first. In another paper,* Kummer gives the corre
sponding formula for the generalized function ^ r(«) which 
contains ideals of higher degree, as follows: 

y2n ___ I 
(3) ind En(a) = 

2(1 + rX-2n _ ( r + l)*-2n) 

rf0*-2» log ^ r ( Q 
-^2n ( m 0 d X)> 

where r is an integer, 1 < r < X — 1, En(a) and y a r e defined 
as before, and ind (En(a)) is i in the relation 

(En(a))<+-M s a* (mod Ç), 

^ being an ideal prime factor of the odd prime q, and t the 
exponent to which q belongs modulo X. Further 

where g is a primitive root of ty such that g^^Vi* = a (mod $ ) , 
h ranges over the integers 0, 1, 2, •••, ql — 2, excepting 
(qt — l)/2, ind (gh + 1) being defined as i in the relation 

* CRELLE, vol. 44, p. 125. 
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(gh + 1) = gi (mod ty). Although Kummer in defining q did 
not state that it was odd, his work is subject to that restriction, 
since his function ^ r(«), as defined by him, has no meaning 
for q = 2, since in that case (ql — l)/2 is not integral. If, 
however, we take the function as defined by H. H. Mitchell * 
for the case q = 2, namely 

where h ranges over the integers 1, 2, • • -, 2l — 2, the formula 
(3) will also hold for this case, as Kummer's argument can be 
used without change except that it is necessary to note in 
proving formulas such as the following (loc. cit., middle of 
page 125) 

(g* - Dig' - g*W - </2X) • • • (g* - <7(-1)x) 
s 1 - f » (mod Ç), 

that since 1 == —- 1 (mod q) for q = 2, 
gVi _ 1 == 1 _ ^ (m() (J ^ 

Kummer (loc. cit., page 120) gives the decomposition of the 
general 4/r{a) into prime ideal factors. Instead of using this 
decomposition we shall examine the form of it given by 
Mitchell t and express the factorization of ^r(cc), t arbitrary, 
in a form analogous to that given by Kummer for the case 
t = 1. Mitchell $ considers the Galois field of order q\ where 
q is any prime, and ql —• 1 = \v. Let the elements of this 
field other than zero each be represented as a power of a 
primitive root, and <n denote any element whose index is 

j 

congruent to i, modulo X. The symbol m* stands for the 
number of solutions of the relation 1 + <r»- = 07 in the field. 
He then defines the function (page 167, relation 4), 

i, 3 

where i and j each range over the integers 0,1, • • •, X — 1, and 
a # 0, 6 + 0, a+b^0 (mod X). For b = - 1, a = - r, 

* TRANSACTIONS OF THIS SOCIETY, vol. 17 (1916), p. 165. 
t Loc. cit., p. 168. 
X Loc. cit., p. 166, § 2. 
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this becomes 

* j 

Since there are mj = m; numbers h = j and ind (gh + 1) s= i 
(mod X), the preceding relation may be written in the form 

ypr{a) = 2a~ ( r+1 ) ; i+ ind (^+1) . 

Now apply Mitchell's first theorem (loc. cit., page 173) to 
the particular function \f/r(a). We have in this case t = tu 
where q belongs to the exponent t±, modulo X. We conclude 
that the number of times the ideal $*, where this symbol 
designates the ideal obtained from ^ by the substitution 
(akla), hi == 1 (mod X), is equal to the number of the expres
sions | — riqt~j | + | — iql~j \, j = 0 , 1 , •••,£—• 1, whose values 
exceed X, the integer i assuming (X — l)/t values prime to X 
such that the quotient of no two of them is congruent modulo 
X to a power of q} and the symbol \x\ denoting the least 
positive residue of x, modulo X. Now if we select the integers 
I in the set 1, 2, • • -, X — 1, which satisfy the relation j — y*Z| 
—I— | — /1 > X, we may show from what precedes that 

(4) U% = *,(«), 
c 

where c ranges over the integers which satisfy c/= 1 (mod X). 
For, the integers 1, 2, • • -, X — 1, are congruent modulo X to 
the integers 

k, kq, kq2, • • •, kq1"1, 
k, kq, kq2, •••, kql~l, 

is, %qi i&q , * ' ', isQ , 

in some order, where s = (X — ï)[t, and k, k, • • -, k are the 
integers less than X such that the quotient of no two of them 
is congruent, modulo X, to a power of q, since this definition 
of the i's shows that no two elements of the above array are 
congruent modulo X. According to the first conclusion re
garding factors of ypr{®), we may write 

(5) M«) =11%"', 
a 
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where a ranges over the integers ii, 1*2, • • -, is, and da is the 
number of expressions 

| " riaq*-f\+\ - v T y | , 0' = 0, 1, 2, • • -, < - 1), 
whose values exceed X. Since <$(a)= ty(aq°), a an integer, 
the ideals $ ( V J ) , $ (v? 2 ) , • • -, ^ ( M ' " 1 ) , where $(«/) = W ) 
are all equal, and the decomposition (5) is identical with the 
the decomposition (4), which was to be shown. Using 
Kummer's notation, the relation 

| - ri9q*-*\+\- ieq
t~j\> X 

may be written in the form 

—/i+indr > x, 

where 75 is the least positive integer satisfying y& = yb (mod X) 
and ind r is defined by 7 indr = r (mod X). In view of the 
above we may now use the relation* 

(5a) ypr(a)H* = ± ad]jF(ayh) 
h 

where H{k is the class number of 0(a) , Hi prime to X. 
Now, as pointed out in my first article, Kummer employs 

(page 54), without proof or reference the relation 

d0
mKr l og <p(ev) _ d0

mXrlog cpi(ev) 
dvmKr dvmKT (mod X^1), 

m not being a multiple of X — 1, and <p(a) = <PI(OL) (mod Xr+1). 
We shall prove a special case of this relation and use of it will 
enable us to complete the proof of Theorem IV. Assume that 
<p(x) and <pi(x) are two integral algebraic functions of x with 
rational integral coefficients, such that (p(l) = <pi(l) and 
<p(a) = <pi(a). Further let <p(a) be prime to X, whence it 
follows that <p(l) 4E 0 (mod X). Under these conditions, it 
will be shown that 

(6) ^ x — ^ — ^ x (mod X*). 

* Kummer gives this relation in a form not containing the factor ad
y 

but this appears to be an error. Compare the reasoning in the writer's 
paper, ANNALS OF MATHEMATICS, (2), vol. 21, p. 74, on the determination 
of e (a) in relation (6). This does not affect Kummer's later arguments, 
however. 
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We have 
<p(f) = &{?) + VW1 

where V = (evp — l)l(ev — 1) and W\ is an integral function 
of é°. If we divide VW\ by evp — 1, we have a remainder 
which must be of the form cV where c is an integer. We then 
write 

<p(ev) = cpi{ev) + W(evp - 1) + cV. 

Putting v = 0, we have 

<p(l) = ^i(l) + cp, 

and by hypothesis <p(l) = <pi(l), so that c = 0. Hence 

<p(ev) = <pi(ev) + PF(e** - 1) 
and 

<p(e*) W(evp - 1) 

^x(^) ^x(^) 

We then have 

dmX log <p(ev) dm\\ogvi{é°) 
dvmX dvmX 

Now every derivative of U is divisible by X, if zero is sub
stituted for v. Hence every term of the right-hand member 
of the above relation consists of integers or fractions whose 
denominators are prime to X (since <pi(l) 4s 0 (mod X)) and 
whose numerators are divisible by X2, excepting possibly the 
first term. To examine this term, we write X = W/<pi(ev), 
and, therefore 

dvmX - \f* 1) dvmX + m X
 dv * dvmX-l 

Since 
d0

k(evX - 1) _ 
dvk 0 (mod X2), 
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for k > 1, it follows from these relations that 

^ = 0(modX«); 

and by using this with (7) the congruence (6) is obtained. 
From (5a) we have 

(56) ^ ( a ) 2 ^ - » = c ^ - ^ I I ^ V y - 1 , 
h 

and we may write F(ayh)K~l = 1 + co(l — a) = G(ayh), 

where co is an integer in 0(a), since if 

F(ayh) = a + coi(l - a), 

where a is a rational integer, then 
^ ( a 7 » ) X - l = a X - l + ^(J _ a ) 

= 1 + X& + «a(l - a) 
= 1 + «(1 - a), 

after using the known relation X = e(l — a)*"1 where e is a 
unit in 12(a). The relation (56) then becomes 

(5c) M*)"1^-» = rf^-» I lG f (^ ) , 
whence 

^r(1)*kx<x-i> = J j e ( 1 ) = 1} 

Since it is known that ^v(l) = 1. Hence we can apply (6) to 
(5c), and proceeding as Kummer did on pages 54-57 of his 
article, we obtain 

ind Ev(a) s - (z i ) X + M (y2v ~ D * A - , - do^lOif) . 
2#iX dvx~2p 

modulo X. By definition of G we also have 

d0*-»lG(ev) _ d^-HF{e*) 
dvx~2u dvx" 

(mod X), 

and the last two relations give the congruence obtained by 
Kummer (loc. cit., page 57). The remainder of his argument, 
up to page 61, appears to be correct, if we use the Dedekind 
definition of ideal. This establishes the theorem which I 
have designated IV. 

CORNELL UNIVERSITY 


