NOTE ON QUARTILES AND ALLIED MEASURES*

BY DUNHAM JACKSON

If a number of values $a_{1}, a_{2}, \cdots, a_{n}$ of a quantity x have been observed, the lower quartile of this set of observations may be roughly described as a number x_{1} such that one fourth of the a 's are less than x_{1} and three fourths of them are greater than x_{1}. Something more is needed for an exact definition, inasmuch as the condition stated either leads to an indeterminate value or is impossible of realization, according to circumstances. If x_{1} is defined as a value of x which reduces to a minimum the expression

$$
S_{1}=\sum_{i=1}^{n} \varphi_{1}\left(x-a_{i}\right)
$$

where $\varphi_{1}(x)=\frac{3}{4} x$ for $x \geqq 0, \varphi_{1}(x)=-\frac{1}{4} x$ for $x \leqq 0$, there will always be at least one value of x_{1} satisfying the condition, and this will agree with the value of the quartile as ordinarily understood, but if $n=4 k$ and $a_{k} \neq a_{k+1}$, when the a 's are arranged in order of increasing algebraic magnitude, any number between a_{k} and a_{k+1} will meet the requirement. It is the purpose of this note to show that a unique determination results in all cases from a definition analogous to one which the author recently suggested for the median. \dagger As in the previous instance, the definition is admittedly of theoretical rather than practical interest. The discussion is put in such a form as to apply equally well to an arbitrary percentile or other measure of similar character, the ratio $1: 3$ being replaced by any other positive ratio.

Let a_{1}, \cdots, a_{n} be a set of real numbers (not necessarily all distinct) arranged in ascending order of magnitude algebraically, and let c be an arbitrary number of the interval $0<c$ <1. For $p \geqq 1$, let a function $\varphi_{p}(x)$ be defined as follows: $\varphi_{p}(x)=(1-c) x^{p}$ for $x \geqq 0, \quad \varphi_{p}(x)=c(-x)^{p}$ for $x \leqq 0$.

* Presented to the Society, October 28, 1922.
\dagger Note on the median of a set of numbers, this Bulletin, vol. 27 (1920-21), pp. 160-164.

The value of c will be kept constant throughout, and need not be indicated in the notation for the function φ. Let

$$
S_{p}=\sum_{i=1}^{n} \varphi_{p}\left(x-a_{i}\right)
$$

and let x_{p} stand for the value of x, or any value of x, which reduces S_{p} to a minimum. It is to be shown that x_{p} is uniquely determined for each value of $p>1$; that as p approaches 1 , x_{p} approaches x_{1}, if x_{1} has a determinate value; and that in the contrary case, x_{p} approaches a definite limit belonging to the interval within which x_{1} is indeterminate.

Consider first the case that $c n$ is not an integer. Let k be the integer such that $k-1<c n<k$. Then x_{1} definitely has the value a_{k}. For as x changes from a_{k} to $a_{k}+\delta$, at least k terms of the sum S_{1} are increased, each by the amount $(1-c) \delta$, and not more than $n-k$ terms are diminished, the amount of decrease in each case being $c \delta$ at most, so that the net change in S_{1} is at least

$$
k(1-c) \delta-(n-k) c \delta=(k-c n) \delta>0 ;
$$

and as x changes from a_{k} to $a_{k}-\delta$, at least $n-k+1$ terms are increased, not more than $k-1$ are diminished, and the net change is at least

$$
(n-k+1) c \delta-(k-1)(1-c) \delta=(c n-k+1) \delta>0 .
$$

It will be shown that x_{p} is uniquely determined for each value of $p>1$, and that $\lim _{p=1} x_{p}=a_{k}$.
When $p>1$, the function $\varphi_{p}(x)$ is continuous and has a continuous derivative for all values of x, including $x=0$. Since $S_{p}(x)$ is continuous and becomes infinite as x becomes infinite in either direction, it must have at least one minimum. A necessary condition for a minimum is the vanishing of $S_{p}{ }^{\prime}(x)$. But it is readily seen, either by inspection or by writing down the explicit formulas, that $\varphi_{p}{ }^{\prime}(x)$ always increases when x increases, so that $S_{p}{ }^{\prime}(x)$ likewise increases when x increases, and can vanish only once. This proves the existence and uniqueness of x_{p}.

Let ϵ be an arbitrarily small positive quantity, and let r be an index such that $a_{r}<a_{k}+\epsilon \leqq a_{r+1}$; it is clear that $r \geqq k$.

It follows from the definition of φ that $\varphi_{p}{ }^{\prime}(x)=(1-c) p x^{p-1}$ or $-c p(-x)^{p-1}$, according to the sign of x, and hence

$$
\begin{aligned}
& \frac{1}{p} S_{p}^{\prime}\left(a_{k}+\epsilon\right)=(1-c)\left(a_{k}+\epsilon-a_{1}\right)^{p-1}+\cdots \\
& +(1-c)\left(a_{k}+\epsilon-a_{r}\right)^{p-1}-c\left(a_{r+1}-a_{k}-\epsilon\right)^{p-1}-\cdots \\
& \quad-c\left(a_{n}-a_{k}-\epsilon\right)^{p-1} .
\end{aligned}
$$

When p approaches 1 , each of the first r terms on the right, apart from the factor $1-c$, approaches the limit 1 , and each of the remaining terms, apart from the factor c, but inclusive of the algebraic sign, approaches -1 or possibly 0 . So
$\lim _{p=1} S_{p}^{\prime}\left(a_{k}+\epsilon\right) \geqq r(1-c)-(n-r) c=r-c n \geqq k-c n>0$.
Similarly,

$$
\lim _{p=1} S_{p}^{\prime}\left(a_{k}-\epsilon\right)<0
$$

For if the definition of r is changed so that $a_{r} \leqq a_{k}-\epsilon<a_{r+1}$, then $r \leqq k-1$, and

$$
\begin{aligned}
& \frac{1}{p} S_{p}^{\prime}\left(a_{k}-\epsilon\right)=(1-c)\left(a_{k}-\epsilon-a_{1}\right)^{p-1}+\cdots \\
&+(1-c)\left(a_{k}-\epsilon-a_{r}\right)^{p-1}-c\left(a_{r+1}-a_{k}+\epsilon\right)^{p-1}-\cdots \\
& \quad-c\left(a_{n}-a_{k}+\epsilon\right)^{p-1} \\
& \lim _{p=1} S_{p}^{\prime}\left(a_{k}-\epsilon\right) \leqq r(1-c)-(n-r) c=r-c n \\
& \leqq k-1-c n<0
\end{aligned}
$$

So the value x_{p} for which $S_{p}{ }^{\prime}$ vanishes must be between $a_{k}-\epsilon$ and $a_{k}+\epsilon$ when p is sufficiently near 1 , or, in other words, $\lim _{p=1} x_{p}=a_{k}$.

Suppose now that $c n$ is an integer, and let $c n=k$. If it happens that $a_{k}=a_{k+1}$, reasoning similar to that presented above shows that $x_{1}=a_{k}$ and $\lim _{p=1} x_{p}=a_{k}$, as before.

This special case being left aside, it is to be assumed that $a_{k}<a_{k+1}$. The definition of x_{1} is satisfied by a_{k} or a_{k+1} or any intermediate value. For $p>1$, on the other hand, x_{p} is seen to be uniquely determined, by the same argument as was used before. Furthermore, it is recognized that

$$
\begin{aligned}
\lim _{p=1} S_{p}{ }^{\prime}\left(a_{k}\right) & =(k-1)(1-c)-(n-k) c \\
& =k-1+c-c n=c-1<0, \\
\lim _{p=1} S_{p}{ }^{\prime}\left(a_{k+1}\right) & =k(1-c)-(n-k-1) c=k-c n+c=c>0 \\
\text { so that } a_{k} & <x_{p}<a_{k+1} \text { when } p \text { is sufficiently near } 1 . \text { It }
\end{aligned}
$$

remains to be shown that x_{p} approaches a definite limit as p approaches 1 .

Let x have a value between a_{k} and a_{k+1}. For $i=1,2, \cdots, k$, $x-a_{i}$ is positive, and

$$
\begin{aligned}
& \left(x-a_{i}\right)^{p-1}=e^{(p-1) \log \left(x-a_{i}\right)} \\
& \quad=1+(p-1) \log \left(x-a_{i}\right)+\frac{1}{2}(p-1)^{2} \log ^{2}\left(x-a_{i}\right)+\cdots \\
& \quad=1+(p-1)^{\prime} \log \left(x-a_{i}\right)+(p-1)^{2} \rho_{i}(x, p)
\end{aligned}
$$

where $\rho_{i}(x, p)$ is a function which approaches $\frac{1}{2} \log ^{2}\left(x-a_{\imath}\right)$, and so remains finite, if x is held fast and p approaches 1. For $i>k$,

$$
\left(a_{i}-x\right)^{p-1}=1+(p-1) \log \left(a_{i}-x\right)+(p-1)^{2} \rho_{i}(x, p)
$$

where $\rho_{i}(x, p)$ again remains finite for fixed x as p approaches 1 . If these values are substituted in the explicit expression for $(1 / p) S_{p}{ }^{\prime}(x)$, there will be k terms each equal to $(1-c)$ and $(n-k)$ terms each equal to $(-c)$, which will destroy each other, because of the relation $c n=k$, and each of the remaining terms will have a factor $p-1$, so that we may write

$$
\begin{aligned}
& \frac{1}{p(p-1)} S_{p}^{\prime}(x)=(1-c)\left[\log \left(x-a_{1}\right)+\cdots+\log \left(x-a_{k}\right)\right] \\
& \quad-c\left[\log \left(a_{k+1}-x\right)+\cdots+\log \left(a_{n}-x\right)\right]+(p-1) \rho(x, p) \\
& \quad=\log \frac{\left[\left(x-a_{1}\right) \cdots\left(x-a_{k}\right)\right]^{1-c}}{\left[\left(a_{k+1}-x\right) \cdots\left(a_{n}-x\right)\right]^{c}}+(p-1) \rho(x, p),
\end{aligned}
$$

the function ρ remaining finite as p approaches 1.
As the exponents c and $1-c$ are both positive, the fraction on the right increases steadily from 0 to $+\infty$ as x goes from a_{k} to a_{k+1}, and the logarithm increases steadily from $-\infty$ to $+\infty$, taking on the value 0 just once, say for $x=X$. For $x=X+\epsilon$, the logarithm is positive and independent of p, while the term $(p-1) \rho(X+\epsilon, p)$ approaches zero as p approaches 1 . So the value of the whole expression on the right is positive when $p-1$ is sufficiently small. For a similar reason, the expression is negative for $x=X-\epsilon$, if p is sufficiently close to 1 . This means that the root of $S_{p}{ }^{\prime}(x)$ is between $X-\epsilon$ and $X+\epsilon$ when $p-1$ is sufficiently small, that is,

$$
\lim _{p=1} x_{p}=X
$$

The University of Minnesota

