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NOTE ON QUARTILES AND ALLIED MEASURES *

BY DUNHAM JACKSON

If a number of values a;, as, - -+, a, of a quantity x have
been observed, the lower quartile of this set of observations
may be roughly described as a number z; such that one fourth
of the a’s are less than x; and three fourths of them are greater
than x;. Something more is needed for an exact definition,
inasmuch as the condition stated either leads to an indeter-
minate value or is impossible of realization, according to
circumstances. If x; is defined as a value of « which reduces
to a minimum the expression

S, = Zl o1 — ay),

where ¢;(z) = 3 for = 0, ¢1(x) = — %z for x = 0, there
will always be at least one value of x; satisfying the condition,
and this will agree with the value of the quartile as ordinarily
understood, but if n = 4k and a; 5 axy1, when the a’s are
arranged in order of increasing algebraic magnitude, any
number between a; and az,1 will meet the requirement. It is
the purpose of this note to show that a unique determination
results in all cases from a definition analogous to one which
the author recently suggested for the median.} As in the
previous instance, the definition is admittedly of theoretical
rather than practical interest. The discussion is put in such
a form as to apply equally well to an arbitrary percentile or
other measure of similar character, the ratio 1:3 being
replaced by any other positive ratio.

Let ay, -+ -, a, be a set of real numbers (not necessarily all
distinct) arranged in ascending order of magnitude algebra-
ically, and let ¢ be an arbitrary number of the interval 0 < ¢
< 1. For p = 1, let a function ¢,(x) be defined as follows:
op(@) = (L —c)a? forx =0, ¢u@)=c(— 2)? forz =0.

* Presented to the Society, October 28, 1922,
t Note on the median of a set of mumbers, this BULLETIN, vol. 27
(1920-21), pp. 160-164.
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The value of ¢ will be kept constant throughout, and need not
be indicated in the notation for the function ¢. Let

S, = 2 eala = a),

and let z, stand for the value of @, or any value of x, which
reduces S, to a minimum. It is to be shown that x, is uniquely
determined for each value of p > 1; that as p approaches 1,
x, approaches xy, if #; has a determinate value; and that in
the contrary case, x, approaches a definite limit belonging to
the interval within which a; is indeterminate.

Consider first the case that cn is not an integer. Let k be
the integer such that k — 1 < cn < k. Then z, definitely has
the value a;. For as « changes from ay to ay + 6, at least k&
terms of the sum S; are increased, each by the amount (1 — ¢)8,
and not more than n — & terms are diminished, the amount
of decrease in each case being ¢6 at most, so that the net
change in S; is at least

k(1 —¢)6 — (n— k)ed = (k — ¢en)d > 0;
and as x changes from a; to ar — 9, at least n — k -+ 1 terms

are increased, not more than ¥ — 1 are diminished, and the
net change is at least

m—Fk+1ed— Fk—1)A —¢)d= (ecn—k+ 1)6 > 0.
It will be shown that z, is uniquely determined for each value
of p > 1, and that lim,_1z, = a.

When p > 1, the function ¢,(x) is continuous and has a
tontinuous derivative for all values of 2, including z = 0.
Since S,() is continuous and becomes infinite as x becomes
infinite in either direction, it must have at least one minimum.
A necessary condition for a minimum is the vanishing of
S,/ (x). But it is readily seen, either by inspection or by
writing down the explicit formulas, that ¢,’(z) always in-
creases when x increases, so that S,’(x) likewise increases when
x increases, and can vanish only once. This proves the
existence and uniqueness of .

Let € be an arbitrarily small positive quantity, and let r be
an index such that a, < ay + € = a,y1; it is clear that r = F.
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It follows from the definition of ¢ that ¢,/ (x) = (1 — ¢)px?!
or — ep(— x)?7L, according to the sign of x, and hence

%sp'(ak+ 9= (- ate—a)+ -

+ A—-0er+e—a)?! — claryr — ar — P — -

— ¢y, — ar, — €7 L
When p approaches 1, each of the first » terms on the right,
apart from the factor 1 — ¢, approaches the limit 1, and each
of the remaining terms, apart from the factor ¢, but inclusive
of the algebraic sign, approaches — 1 or possibly 0. So
linllsp'(ak-l—e) =Zr(l—c)—(m—r)c=r—cn=k— cn>0.
p=
Similarly,

Linll 8, (ar, — €) < 0.

For if the definition of r is changed so that a. = a; — € < @41,
thenr =%k — 1, and
%Sp’(ak —e=1—c)(ar—e—a)?rt+ ---

+ A —-c)er—e— a)?PP —c(@rp1 —ar + )Pt — .-

- c(a'n —ar+ e)p—-l’
linll Sy(ax—€ =r(l—c¢c)— (n—1r)c=1r—cn
’ =k—1—ecen<0.
So the value , for which S, vanishes must be between a; — ¢
and a; + € when p is sufficiently near 1, or, in other words,
limy_y @, = ay.

Suppose now that c¢n is an integer, and let en = k. If it
happens that a; = ap41, reasoning similar to that presented
above shows that 21 = a3 and lim,—; x, = as, as before.

This special case being left aside, it is to be assumed that
a;, < agp1- The definition of 2 is satisfied by ay or a4y or
any intermediate value. For p > 1, on the other hand, z, is
seen to be uniquely determined, by the same argument as
was used before. Furthermore, it is recognized that

linll Sy (ar) = (k— 1)1 —¢) — (n— k)

’ =k—14+c—en=c—1<0,
linllSp’(ak+1) =k(l—c)—m—k—1De=k—cn+c=¢>0,
o=

so that ar < zp < appr when p is sufficiently near 1. It
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remains to be shown that x, approaches a definite limit as
p approaches 1.
Let « have a value between a; and axy1. Fori= 1,2, -k,
x — a; is positive, and
(x — ai)”"l = ¢ (p—Dlog(z—ai)
=14+ @—Dlog (@—a) + 3(p— 1) log* @—a)+ ---
=14+ (p—1)log (@— a)+ (p — 1)%i(z, p),
where p;(z, p) is a function which approaches % log? (x — a,),
and so remains finite, if @ is held fast and p approaches 1.
For ¢ >k,

(a; — )* =1+ (p — D log (a; — 2) + (p — 1)’pi(2, p),
where p;(x, p) again remains finite for fixed z as p approaches 1.
If these values are substituted in the explicit expression for
(1/p)S,/ (x), there will be k terms each equal to (1 — ¢) and
(n — k) terms each equal to (— ¢), which will destroy each
other, because of the relation ¢cn = k, and each of the re-
maining terms will have a factor p — 1, so that we may write

1 ") = (1 — — —
=D S,/ (@) = (1 — ¢o)log (x — ) + + log (@ — ax)]

— cllog (art1 — @) + -+ + log (an — @)] + (p — Do(2, p)

_ [(@—a)---(@ — ap)] _

= log [(ak+l _ x) . (an _ x)]c'l' (p l)p(w, p)y
the function p remaining finite as p approaches 1.

As the exponents ¢ and 1 — ¢ are both positive, the
fraction on the right increases steadily from 0 to + « as
goes from ay, to axy1, and the logarithm increases steadily from
— ® to 4 oo, taking on the value 0 just once, say for « = X.
For « = X 4 ¢, the logarithm is positive and independent of
p, while the term (p — 1)p(X 4+ ¢, p) approaches zero as p
approaches 1. So the value of the whole expression on the
right is positive when p — 1 is sufficiently small. For a
similar reason, the expression is negative for x = X — ¢, if p
is sufficiently close to 1. This means that the root of S, (x)
is between X — e and X 4 e when p — 1 is sufficiently small,
that is,

lim 2, = X.
p=1
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