NOTE ON QUARTILES AND ALLIED MEASURES * by dunham jackson

If a number of values a_1, a_2, \dots, a_n of a quantity x have been observed, the lower quartile of this set of observations may be roughly described as a number x_1 such that one fourth of the a's are less than x_1 and three fourths of them are greater than x_1 . Something more is needed for an exact definition, inasmuch as the condition stated either leads to an indeterminate value or is impossible of realization, according to circumstances. If x_1 is defined as a value of x which reduces to a minimum the expression

$$S_1 = \sum_{i=1}^n \varphi_1(x - a_i),$$

where $\varphi_1(x) = \frac{3}{4}x$ for $x \ge 0$, $\varphi_1(x) = -\frac{1}{4}x$ for $x \le 0$, there will always be at least one value of x_1 satisfying the condition, and this will agree with the value of the quartile as ordinarily understood, but if n = 4k and $a_k \ne a_{k+1}$, when the *a*'s are arranged in order of increasing algebraic magnitude, any number between a_k and a_{k+1} will meet the requirement. It is the purpose of this note to show that a unique determination results in all cases from a definition analogous to one which the author recently suggested for the median.[†] As in the previous instance, the definition is admittedly of theoretical rather than practical interest. The discussion is put in such a form as to apply equally well to an arbitrary percentile or other measure of similar character, the ratio 1:3 being replaced by any other positive ratio.

Let a_1, \dots, a_n be a set of real numbers (not necessarily all distinct) arranged in ascending order of magnitude algebraically, and let c be an arbitrary number of the interval 0 < c< 1. For $p \ge 1$, let a function $\varphi_p(x)$ be defined as follows: $\varphi_p(x) = (1-c)x^p$ for $x \ge 0$, $\varphi_p(x) = c(-x)^p$ for $x \le 0$.

^{*} Presented to the Society, October 28, 1922.

 $[\]dagger$ Note on the median of a set of numbers, this BULLETIN, vol. 27 (1920–21), pp. 160–164.

DUNHAM JACKSON

[Jan.,

The value of c will be kept constant throughout, and need not be indicated in the notation for the function φ . Let

$$S_p = \sum_{i=1}^n \varphi_p(x - a_i),$$

and let x_p stand for the value of x, or any value of x, which reduces S_p to a minimum. It is to be shown that x_p is uniquely determined for each value of p > 1; that as p approaches 1, x_p approaches x_1 , if x_1 has a determinate value; and that in the contrary case, x_p approaches a definite limit belonging to the interval within which x_1 is indeterminate.

Consider first the case that cn is not an integer. Let k be the integer such that k - 1 < cn < k. Then x_1 definitely has the value a_k . For as x changes from a_k to $a_k + \delta$, at least kterms of the sum S_1 are increased, each by the amount $(1 - c)\delta$, and not more than n - k terms are diminished, the amount of decrease in each case being $c\delta$ at most, so that the net change in S_1 is at least

 $k(1-c)\delta - (n-k)c\delta = (k-cn)\delta > 0;$

and as x changes from a_k to $a_k - \delta$, at least n - k + 1 terms are increased, not more than k - 1 are diminished, and the net change is at least

 $(n-k+1)c\delta - (k-1)(1-c)\delta = (cn-k+1)\delta > 0.$ It will be shown that x_p is uniquely determined for each value of p > 1, and that $\lim_{p=1} x_p = a_k$.

When p > 1, the function $\varphi_p(x)$ is continuous and has a vontinuous derivative for all values of x, including x = 0. Since $S_p(x)$ is continuous and becomes infinite as x becomes infinite in either direction, it must have at least one minimum. A necessary condition for a minimum is the vanishing of $S_p'(x)$. But it is readily seen, either by inspection or by writing down the explicit formulas, that $\varphi_p'(x)$ always increases when x increases, so that $S_p'(x)$ likewise increases when x increases, and can vanish only once. This proves the existence and uniqueness of x_p .

Let ϵ be an arbitrarily small positive quantity, and let r be an index such that $a_r < a_k + \epsilon \leq a_{r+1}$; it is clear that $r \geq k$.

18

It follows from the definition of φ that $\varphi_p'(x) = (1-c)px^{p-1}$ or $-cp(-x)^{p-1}$, according to the sign of x, and hence $\frac{1}{p}S_p'(a_k + \epsilon) = (1-c)(a_k + \epsilon - a_1)^{p-1} + \cdots + (1-c)(a_k + \epsilon - a_r)^{p-1} - c(a_{r+1} - a_k - \epsilon)^{p-1} - \cdots - c(a_n - a_k - \epsilon)^{p-1}.$

When p approaches 1, each of the first r terms on the right, apart from the factor 1 - c, approaches the limit 1, and each of the remaining terms, apart from the factor c, but inclusive of the algebraic sign, approaches -1 or possibly 0. So $\lim_{p \to 1} S_p'(a_k + \epsilon) \geq r(1 - c) - (n - r)c = r - cn \geq k - cn > 0$. Similarly,

$$\lim_{p=1} S_p'(a_k - \epsilon) < 0.$$

For if the definition of r is changed so that $a_r \leq a_k - \epsilon < a_{r+1}$, then $r \leq k-1$, and $\frac{1}{p}S_p'(a_k - \epsilon) = (1-c)(a_k - \epsilon - a_1)^{p-1} + \cdots + (1-c)(a_k - \epsilon - a_r)^{p-1} - c(a_{r+1} - a_k + \epsilon)^{p-1} - \cdots - c(a_n - a_k + \epsilon)^{p-1},$ $\lim_{p \geq 1} S_p'(a_k - \epsilon) \leq r(1-c) - (n-r)c = r - cn$

$$\leq k - 1 - cn < 0.$$

So the value x_p for which S_p' vanishes must be between $a_k - \epsilon$ and $a_k + \epsilon$ when p is sufficiently near 1, or, in other words, $\lim_{p \to 1} x_p = a_k$.

Suppose now that cn is an integer, and let cn = k. If it happens that $a_k = a_{k+1}$, reasoning similar to that presented above shows that $x_1 = a_k$ and $\lim_{p \to 1} x_p = a_k$, as before.

This special case being left aside, it is to be assumed that $a_k < a_{k+1}$. The definition of x_1 is satisfied by a_k or a_{k+1} or any intermediate value. For p > 1, on the other hand, x_p is seen to be uniquely determined, by the same argument as was used before. Furthermore, it is recognized that

$$\lim_{p \to 1} S_p'(a_k) = (k-1)(1-c) - (n-k)c$$

= $k - 1 + c - cn = c - 1 < 0$,
$$\lim_{p \to 1} S_p'(a_{k+1}) = k(1-c) - (n-k-1)c = k - cn + c = c > 0$$
,
so that $a_k < x_p < a_{k+1}$ when p is sufficiently near 1. It

remains to be shown that x_p approaches a definite limit as p approaches 1.

Let x have a value between a_k and a_{k+1} . For $i = 1, 2, \dots, k$, $x - a_i$ is positive, and $(x - a_i)^{p-1} = e^{(p-1)\log(x-a_i)}$

$$= 1 + (p-1) \log (x-a_i) + \frac{1}{2}(p-1)^2 \log^2 (x-a_i) + \cdots$$

= 1 + (p-1) log (x - a_i) + (p-1)^2 \rho_i(x, p),

where $\rho_i(x, p)$ is a function which approaches $\frac{1}{2} \log^2 (x - a_i)$, and so remains finite, if x is held fast and p approaches 1. For i > k,

$$(a_i - x)^{p-1} = 1 + (p-1) \log (a_i - x) + (p-1)^2 \rho_i(x, p),$$

where $\rho_i(x, p)$ again remains finite for fixed x as p approaches 1.
If these values are substituted in the explicit expression for $(1/p)S_p'(x)$, there will be k terms each equal to $(1 - c)$ and $(n - k)$ terms each equal to $(-c)$, which will destroy each other, because of the relation $cn = k$, and each of the remaining terms will have a factor $p - 1$, so that we may write

$$\frac{1}{p(p-1)} S_{p}'(x) = (1-c)[\log (x-a_{1}) + \dots + \log (x-a_{k})] - c[\log (a_{k+1}-x) + \dots + \log (a_{n}-x)] + (p-1)\rho(x, p) = \log \frac{[(x-a_{1})\cdots(x-a_{k})]^{1-c}}{[(a_{k+1}-x)\cdots(a_{n}-x)]^{c}} + (p-1)\rho(x, p),$$

the function ρ remaining finite as p approaches 1.

As the exponents c and 1-c are both positive, the fraction on the right increases steadily from 0 to $+\infty$ as xgoes from a_k to a_{k+1} , and the logarithm increases steadily from $-\infty$ to $+\infty$, taking on the value 0 just once, say for x = X. For $x = X + \epsilon$, the logarithm is positive and independent of p, while the term $(p-1)\rho(X + \epsilon, p)$ approaches zero as papproaches 1. So the value of the whole expression on the right is positive when p-1 is sufficiently small. For a similar reason, the expression is negative for $x = X - \epsilon$, if pis sufficiently close to 1. This means that the root of $S_p'(x)$ is between $X - \epsilon$ and $X + \epsilon$ when p-1 is sufficiently small, that is,

$$\lim_{p=1} x_p = X.$$

The University of Minnesota

20