The polynomials $Z_{ik}A^{\mu}$ are transformed by the adjoint of φ , and according to the theorem of Schur mentioned above, a matrix which transforms a system of linearly dependent polynomials which are not all zero is reducible. Hence if the $Z_{ik}A^{\mu}$ were linearly dependent, the matrix φ would be reducible, contrary to our assumption.

5. Conclusion. We have proved the following theorem: THEOREM. If G_1, \dots, G_h are a system of polynomials in the a_{ij} , and G_1', \dots, G_h' the same functions of the a_{ij}' such that

$$(G_1, \cdots, G_h) = (0, \cdots, 0)$$

is an invariantive property, then there exists a set of rational integral relative covariants V_1, \dots, V_v in p-1 sets of cogredient variables such that $(V_1, \dots, V_v) = (0, \dots, 0)$ when and only when $(G_1, \dots, G_h) = (0, \dots, 0)$.

PRINCETON UNIVERSITY

A CORRECTION

BY B. A. BERNSTEIN

In my paper in the November number of this BULLETIN (vol. 28, No. 8), the word *integers* should be replaced by the word *rationals* in line 16 of page 398 and in the table on page 399.