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A SET OF AXIOMS FOR LINE GEOMETRY* 

BY M. G. GABA 

1. Introduction. In 1901 Pieri proposed a set of axioms for 
line geometry in terms of line and intersection.! That Pieri's 
set of eleven postulates was not independent was shown by 
Hedrick and Ingold in 1914; they proposed a simpler and 
more elegant set of but five independent axioms, using the 
same undefined concepts.} Both of these sets are for geome
tries equiva ent to the general three-space geometry established 
by axioms Ai, A2, A%, E0, Eh E2, E3 and Es of Veblen and 
Young. § 

In this paper is given a set of six independent axioms in terms 
of line as an undefined element and an undefined class of 
one-to-one correspondences among the lines called collinea-
tions. There is introduced but one defined term before the 
complete statement of the axioms. To make a proper pro
jective space it has usually been necessary not only to add a 
postulate of projectivity but also a sequence of definitions for 
such concepts as perspectivity, projectivity, etc., to give that 
postulate content. If to our set a seventh postulate is added, 
we have a proper projective three-space without the inter
vention of any additional defined concepts. || 

2. Postulates. Our basis is a class of undefined elements, 
called lines; an undefined class of one-to-one correspondences, 
or transformations, among the lines, called collineations; and 

* Presented to the Society, Nov. 27, 1920. 
f Sui principi che regno la geometria delle rette, TORINO ATTI , vol. 36 

(1901), pp. 335-351. 
t A set of axioms for line geometry, TRANSACTIONS OP THIS SOCIETY, 

vol. 15 (1914), pp. 205-214. 
§ A set of assumptions for projective geometry, AMERICAN JOURNAL, vol. 

30 (1908); Projective Geometry, vol. 1, Boston, 1910. 
!j Another set of postulates equivalent to the set of all seven of the 

axioms is the first seven given by the author in his paper A set of postulates 
for general projective geometry, TRANSACTIONS OF THIS SOCIETY, vol. 16 
(1915), pp. 51-61. 
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a class of defined classes of lines, called fields. By a one-to-one 
correspondence among the lines we mean that to every line a 
there corresponds one and only one line a, and no OL is the 
correspondent of two distinct lines a\ and a*. This concept 
of one-to-one correspondence may be said to belong to the 
domain of pure logic; we shall therefore not consider it in 
our basis as an undefined mathematical notion.* We shall 
define a field as a class of at least three lines such that : 
(1) every collineation that makes any two distinct lines of the 
class correspond to two distinct lines of the class leaves the 
class invariant; (2) a collineation exists that will make any 
two distinct lines of the class correspond to any two distinct 
lines of the class; (3) the class has no proper super-class pos-
essing property (2). 

Our axioms, whose technical independence is shown by 
examples given at the end of this paper, are as follows: 

I. There exists a line. 
I I . If a is a line, there exist five distinct fields containing a. 
III. If a collineation n exists such that n makes correspond 

to the set of lines A the set of lines B, and if a collineation TI 
exists such that n makes correspond to the set of lines A the set 
of lines C, then a collineation TZ exists such that T% makes corre
spond to the set of lines B the set of lines C. 

IV. If no collineation exists that makes correspond to the field 
A the field B, and if no collineation exists that makes correspond 
to the field A the field C, then a collineation r exists that makes 
correspond to the field B the field C. 

V. If A and B are fields such that a collineation r exists that 
makes correspond to the field A the field B, then the fields A and 
B have a line in common. 

VI. If A, B and C are fields such that A and B have a line a\ 
in common, and B and C have a line a2 in common, and C and 

* It is true, of course, that no sharp line of demarcation exists between 
concepts of pure logic and of mathematics; but an author may choose 
whether or not he will include a given concept in his own discussion. 
See Federico Enriques, Problems of Science, authorized translation by J. 
Royce. Open Court Publishing Co., 1914, p. 122. 
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A have a line a% in common, then there exists a field D such that 
D contains the lines <x\, a2 and a%. 

VII. If A, B, C and D are four distinct fields having a line a 
in common, and if collineations n, r2 and r% exist such that n 
makes correspond to the field A the field B, r2 makes correspond 
to the field B the field C, and T$ makes correspond to the field C 
the field D, then every coUineation r that leaves A, B and C 
invariant also leaves D invariant. 

3. Theorems. THEOREM 1. If A is a field, then a coUineation 
exists that leaves A invariant. 

Let us assume that no coUineation exists that leaves A 
invariant. If now we let fields B and C of Postulate IV be 
identical with A, we are led at once to an absurdity. 

THEOREM 2. If a coUineation r exists that makes correspond 
to the field A the set of lines B (or transforms A into B, in nota
tion, T(A) = B), then a coUineation r~l exists such that r _ 1 

makes correspond to the set of lines B the field A: r " 1 ^ ) = A. 
By hypothesis, a coUineation r exists such that r(A) = B, 

and, by Theorem 1, a coUineation T\ exists such that TI(A) 
= A. Hence it follows from Postulate I I I that a coUineation 
r _ 1 exists such that T~1(B) = A. 

THEOREM 3. If a coUineation n exists such that n transforms 
the field A into a set of lines B, and a coUineation r2 exists such 
that T2 transforms the set of lines B into a set of lines C, then a 
TZ exists such that TZ transforms A into C. 

By Theorem 2, a coUineation n""1 exists such that rC1(B) 
= A. The existence of rC1 and r2, by virtue of Postulate I I I , 
implies the existence of a coUineation r3 such that n(A) = C. 

COROLLARY. The resultant of a sequence of collineations on 
a field is a coUineation. 

THEOREM 4. Every coUineation transforms a field into afield. 
Let r be any coUineation that transforms the field A into a 

set of lines B. Let ft, ft, ft' and ft' be any four lines of B 
such that ft and ft are distinct and ft' and ft' are distinct; 
and let a\, ai, a\ and a2 ' be the four lines of A such that 
T(OL\, aï, <X\, a2') = ft, ft, ft', ft'. Let n be any coUineation 

such that n (ft, ft) = ft', ft'. From Theorem 2 and the coroll-
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ary of Theorem 3, we know that a collineation r2 = T~1TÏT exists 
such that T2(cei, a?) = cë/, a2', where a / and ëV are lines of A. 
But since the collineation r2 makes two lines of the field A 
correspond to two lines of A (which are distinct, since they 
are the correspondents of pairs of distinct lines), r2 leaves the 
fieldt invariant. Therefore, since T_1TIT(^4) = A,r(A) = JB, 

and r**"1^) = ^y w e have T_ 1TI(J5) = A, and hence TI(B) = B. 
Since A is a field, a collineation r3 exists such that T3(U?I, a2) 

= « / , 0L2', where r ^ f t , ft) = aif a2. Therefore a collineation 
TA = TT3T"1 exists such that r4(ft, ft) = ft7, ft7. 

We have shown that properties (1) and (2) of a field are 
possessed by the set of lines B. Let us now assume that B 
has a proper super-class £* also possessing property (2). If 
r{B) = A and if r7(J5*) = .4*, then A* is a proper super
class of A. Let cei*, a2* and cei*7, a2*' be any two pairs of dis
tinct lines of A*. Furthermore let ft*, ft*, ft*' and ft*7 be 
those four lines of J3* such that r(cei*, a2*) = ft*, ft* and 
r-^ft*7 , ft*7) = ai*7, a2*

7. By our assumption, a rs exists such 
that r5(ft*, ft*) = ft*7, ft*7; therefore a r6 = T~1T*>T exists. 
But Te(cxi*, ce2*) = cei*7, ce2*

7; hence J.* possesses property (2) 
of a field, which is impossible if A is a field. Therefore our 
assumption leads to a contradiction; hence B is a field. 

THEOREM 5. If A and B are distinct fields such that a 
collineation exists transforming A into J5, then A and B have at 
most one line in common. 

Let us assume that A and B have the two distinct lines 71 
and 72 in common. If the collineation that makes A go over 
into B is r, then let r(7i, 72) = ft, ft. Since 71, 72, ft and ft 
are pairs of distinct lines of B, a collineation n exists such that 
n(f t , ft) = 71, 72 and n(B) = B. But TIT(A) = A, since 

71 and 72 of A are invariant; and nr(A) = 5 , since T(A) = 5 ; 
therefore our assumption must be wrong. 

THEOREM 6. If A is a field containing the lines ai and ce2, 
then there exists a field A also containing a\ and a.2 and such that 
no collineation exists that will transform A into A. 

We shall assume a\ and ce2 distinct, since the theorem is true 
in the case where a\ and a2 are identical if it is true when oi\ 
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and a2 are distinct. By means of Postulate I I we know that 
there exists a field A± containing the line a\ and distinct from 
A. Let r be a collineation such that T(OL\, a2) = a2, a\. 
From Theorem 4, we have r(A{) = A2, where A2 is a field 
containing ce2. If A\ = A2, then A\ is ^4, since J. and A\ have 
the two distinct lines a\ and ce2 in common; hence they cannot 
be transformable into one another without contradicting 
Theorem 5. Let us now assume A\ and A2 distinct. Since 
A\ is transformable into A2, fields A\ and A2 have a line a in 
common. But since A and A\ have the line ai in common, 
^4i and A2 the line a in common, and A2 and 4̂ the line a2 in 
common, it follows from Postulate VI that a field A1 exists 
containing a, ai and a2. If A is not transformable into A', 
then J / is A. If 4̂ is transformable into A', then A is identical 
with A' by Theorem 5. In the latter case, however, A\ is 
not transformable into A, since if that were possible, A and A\ 
would be identical, since they have the lines a\ and a (distinct, 
since otherwise A\ = ^42) in common. Since a, a\ and a2 are 
distinct lines of the field A, a collineation n exists such that 
ri(ai, a) = ai, ce2. The collineation n transforms the field A\ 
into a field A\ containing the lines a\ and a2. But 4̂ cannot 
be transformed into A\ , because, if that were possible, then, 
by Postulate I I I , A\ would be transformable into A, Hence 
it follows that A\ is A in this case. 

THEOREM 7. Every field belongs to one or to the other of two 
classes of fields such that collineations exist that will transform 
any field of one class into any field of the same class, and such 
that no collineations exist that will transform any field of one 
class into a field of the other class. _^ 

From Theorem 6, we know that two fields J._and A exist 
such that no collineation will transform A into A. Let [Ai] 
be the class of all fields transformable into A, and let [Ai] be 
the class of all fields transformable into A. Let B be any field. 
If a collineation r exists such that r(B) = A, then B belongs 
to [Ai]. Suppose B does not belong to [Ai], then since no 
collineation exists transforming B into A, and no collineation 
exists transforming A into A, it follows from Theorem 2 and 
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Postulate IV that a collineation f exists such that r(B) = A; 
henceJS belongs to [Ai], But B cannot belong to both [Ai] 
and [Ai], for in that case it would follow from Postulate III 
that A could be transformed into A. Any field Ai of the 
class [Ai] will determine the class, since it is easy to show 
that if Ai and Aj are both members of the class and hence 
transformable into A, they are transformable into one another. 
Furthermore, no Ai of [Ai] can be transformed into an Aj of 
[Ai], since that would make Ai belong to both classes. 

We shall call the fields of one of the two classes of fields 
points, and the fields of the other class planes. We shall use 
the terminology a is a line on the plane p or p is on a to mean 
a is a line of p; P is a point on the plane p or p on P to mean 
that P and p have a line in common; P is a point on the line 
a or a on P to mean that a is a line of P. If two lines are on 
same point, they are called copunctal; if two lines are on the 
same plane, they are called coplanar. 

THEOREM 8. If a point P is on the line a and a is on the 
plane p, then P is on p. 

Since P and p have the line a in common, the theorem 
is obvious. 

THEOREM 9. If two lines are copunctal (coplanar), they are 
coplanar (copunctal). 

This theorem is but a restatement of Theorem 6 in the light 
of subsequent definitions. 

THEOREM 10. If Pi and P2 are distinct points (planes), then 
there is at least one line on both P± and P2. 

See Postulate V. 
THEOREM 11. If Pi and P2 are distinct points (planes), there 

is not more than one line on both Pi and P2. 
See Theorem 5. 
Points (planes) which are on the same line are said to be 

collinear; points (planes) which are not on the same line are 
said to be non-collinear. 

THEOREM 12. If Pi, P2 and P3 are three non-collinear points 
(planes), then there is one and only one plane (point) p such that 
Pi, P2 and P3 are on p. 
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Let the line common to Pi and Pi be as, the line common to 
P2 and P3 be ai, and the line common to P3 and Pi be a2. 
By Postulate VI a field exists containing ai, ai and a3. If this 
field is a point (plane), then Pi, P2 and P3 coincide, contrary 
to the hypothesis that they are non-collinear and hence distinct. 
The field is therefore a plane (point). There can be but one 
such plane (point). Since ai and a% are distinct (otherwise 
Pi, P2 and P3 are collinear), they determine the plane (point) 
p. Let aî be a line of Pi in p', aî a line of P2 in p', and as a 
line of P3 in p'; hence Pi, P2 and P3 are on the plane (point) 
p'. If ce/ and aî coincide, then aî = aî = a3. Since aî 
and «2' are coplanar (copunctal), they must be copunctal 
(coplanar). If aî and aî are distinct, they determine a 
point (plane) P3

;. Now P3 ' cannot be on ce3 since that would 
make aî and aî coincide. By the part of the theorem already 
proved, a plane (point) p" exists such that Pi, P2 and P3 ' are 
on p". But p" contains aî and ce2'; therefore p" is p'. 
Hence the plane (point) p' contains a3. In like fashion it can 
be shown that p' contains «i and a<i\ hence p' is p. 

COROLLARY 1. If Pi and P2 are distinct points (planes), and 
if Pi and P2 are both on the plane (point) p, then the line a 
common to Pi and P2 is on P. 

COROLLARY 2. If P is a point (plane) and a is a line such 
that P is not on a, then there is one and only one plane (point) 
determined by P and a. 

THEOREM 13. If Pi, P2, P3 are three points (planes) not on 
the same line, and a is a line joining P2 and P3, the class [Pi] 
of all points (planes) such that every point (plane) of [Pi] is 
collinear with Pi and some point (plane) on a, is such that every 
point (plane) of [Pi] is on the plane (point) p determined by P and 
a, and every point (plane) on the plane (point) p is a point 
(plane) of [Pi]. 

Let Pi be a point (plane) collinear with Pi, and Pi a point 
(plane) on a. Pi is on p, since P^ is on a, by Theorem 8. 
Let the line determined by Pi and Pi be ai. Then ai is on p 
by Corollary 1, Theorem 12. But Pi is on a,-; therefore Pi 
is on p. 
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Let P ' be any point (plane) of p. P i and P ' determine a 
line a! (unless P ' is Pi , in which case P ' obviously belongs to 
[Pi]). The lines a' and a are distinct since a is not on Pi, 
and they are copunctal (coplanar) since both lines are on p. 
Hence a and CL determine a point (plane) P ' . Hence P ' is 
collinear with Pi , and P ' a point (plane) on a; consequently 
P ' belongs to [Pi]. 

THEOREM 14. /ƒ Pi, P2 , P3 are points (planes) not all on the 
same line, and P4 and P5 (P4 7e Pg) are points (planes) such 
that P2 , P3 , P4 ewe on a line and P i , P3 , P5 a/^ OTI a line, there 
is a point (plane) Pe such that Pi, P2, P& are on a line and also 
P4, P5, Pe are on a line. 

Since the points (planes) Pi, Pi and P 3 are non-coliinear, 
they determine a plane (point) p. The three lines ai common 
to P2 and P3 , a2 common to Pi and P3 , and a3 common to Pi 
and P2 , are on p by Corollary 1, Theorem 12. Since P 4 is 
on a\, and P 5 is on ce2, PA and P 5 are also on p. Hence the 
line a common to P4 and P 5 is on p, and consequently a is 
copunctal (coplanar) with a\. If a and a\ are distinct, they 
determine a point (plane) which is P§. If ce and a% coincide, 
then any point (plane) on a will serve as a PÔ. 

THEOREM 15. If a\ and a% are lines, then ai and a2 are on 
the same number of points (planes). 

Since collineations exist that transform any point (plane) 
into any point (plane) and any line in a point (plane) into 
any other in the same point (plane), a collineâtion r exists 
that transforms a\ into ce2. Every point (plane) on ot\ is 
transformed by r into a point (plane) on ce2, and every point 
(plane) on a2 comes from a point (plane) on <x\. Hence a\ 
and a2 are on the same number of points (planes). 

THEOREM 16. All points (planes) are not on the same line. 
Let us assume that every point (plane) is on a line a. Let 

r be a collineâtion that transforms a into a distinct line a'. 
If we transform every point (plane) by r, we get all the points 
(planes) again, since distinct fields transform into distinct 
fields. But all points (planes) now contain OL as well as a. 
Therefore it follows that there is but one point (plane) P . 
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Every line is in P , since, by Theorem 6, every line is in a 
point (plane). No other field can exist, since, if it did, it 
would be a proper sub-class of P , contrary to the definition 
of field. But if there is only one field, Postulate I I is contra
dicted. Hence our original assumption is false and the 
theorem proved. 

THEOREM 17. If a is a line, then the number of planes on a 
is the same as the number of points on a. 

Since, by Theorem 16, all planes are not on a, there exists 
a line a non-coplanar with a. Every point on a determines, 
with the line a, a different plane, since if two distinct points 
Pi and P2 on a and a were on the same plane, the lines a and 

a would be coplanar. Hence there are at least as many 
planes on a as there are points on a. Likewise every plane 
on a determines, with the line a, a different point. Hence 
there are at least as many points on a as there are planes on a. 
Since, by Theorem 15, the number of points on a and on a 
are equal, and since the number of planes on a must equal 
the number of points on a, it follows that a is on the same 
number of points as a is on planes. 

THEOREM 18. There are at least three points (planes) on 
every line. 

By Postulate I I , every line is on at least five fields; and, 
since the number of planes and points on a line is the same, 
the theorem follows immediately. 

THEOREM 19. All points (planes) are not on the same plane 
(point). 

Let p be any plane (point). Since there is more than one 
plane (point), there exists a line a not on p. If two points 
(planes) of a were on p, then a would be on p. Hence at 
most one of the points (planes) of a can be on p. 

4. Comparison with Ordinary Geometry. Let us now com
pare our geometry with the general three-space geometry of 
Veblen and Young.* If we identify our lines as lines, collinea-
tions as projectivities, and fields as either points or planes in 
the Veblen-Young geometry, then our axioms are theorems in 

* Loc. cit. 
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their geometry. Incidently, the consistency of our axioms is 
thus established. 

On the other hand, let the undefined line of Veblen and 
Young be our line; their undefined point, our point; and their 
on our on. Consider their assumptions of alignment A : 

Ai. If A and B are distinct points, there is at least one line 
on both A and B. 

A2. If A and B are distinct points, there is not more than one 
line on both A and B. 

A%. If A, B, C are points not all on the same line, and D and 
E (D y£ E) are points such that B, C, D are on a line and C, A, E 
are on a line, there is a point F such that A, B, F are on a line 
and also D, E, F are on a line. 

We see that, except for notation, A\ is our Theorem 10, A2 
is Theorem 11, and As is Theorem 14. The plane defined by 
Veblen and Young is equivalent to our plane, by virtue of 
Theorem 13. 

The assumptions of extension, substituting for the usual EJ 
an equivalent axiom also given by Veblen and Young, are 
as follows : 

E0. There are at least three points on every line. 
Ei. There exists at least one line. 
E2. All points are not on the same line. 
JE3. All points are not on the same plane. 
E3. Any two distinct planes have a line in common. 
E0 is our Theorem 18; Ei is Postulate I ; E2 is Theorem 16; 

E3 is Theorem 19; and E3' is Theorem 10. We have therefore 
proved that our geometry is equivalent to that of Veblen 
and Young. 

The assumption of projectivity is as follows: 
P. If a projectivity leaves each of three distinct points of a line 

invariant, it leaves every point of the line invariant. 
I t is evident that P is a rephrasing of Postulate VII in 

terms of point. 
5. Independence Examples.—1. No lines exist. Hence nei

ther collineations nor fields exist. 
—2. Lines are all the lines of a projective three-space and 
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an extra line not in that three-space. Collineations are all 
the projectivities on the lines of the three-space, but in addition 
leave the extra line invariant. Fields are therefore the points 
and planes of the three-space. 

—3. Lines are all the lines of a projective finite three-space. 
Collineations are all the projectivities on the three-space and 
an extra transformation r, such that r transforms every line a 
into a line a' skew to a. Fields are therefore the points and 
planes of the three-space. 

—4. Lines are all the lines of two projective three-spaces 
having no line in common. Collineations are all the projec
tivities on the two three-spaces such that each of the three-
spaces is left invariant. Fields are therefore the points and 
planes of the two three-spaces. 

—5. Lines are all the lines of two projective three-spaces 
having no line in common. Collineations are all the projec
tivities on the two three-spaces such that each of the three-
spaces is left invariant, or such that the two three-spaces are 
interchanged. Fields are therefore the points and planes of 
the two three-spaces. 

—6. Lines are all the lines of a euclidean plane. Collinea
tions are all the projectivities such that parallel lines are 
transformed into parallel lines. Fields are therefore pencils 
of lines. 

—7. Lines are all the lines of an improperly projective 
three-space. Collineations are all the projectivities in such a 
three-space. Fields are therefore the points and planes of 
that three-space. 
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