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AN ELEMENTARY PROOF OF A FUNDAMENTAL 
LEMMA CONCERNING THE LIMIT 

OF A SUM* 

BY H. J. ETTLINGER 

I t is the object of this note to give a simple proof of the 
following lemma upon which may be based the theory of the 
Riemann integral. 

Let the interval I : a ^ x ^b be divided into n equal sub* 
intervals, I(i, ri), each of length Anx = (b — a)/n. To each 
I(i, n) there corresponds a number h{i, n). Let \h(i, n)\ ^ M 
for all values of i ( ^ n) and n, where M is a constant. If x is 
any fixed value in I, then for each value of n, x is contained in 
at least one of the sub-intervals. Let it be designated by I(x, n). 
For each fixed x and each subdivision I(x, n) let the corresponding 
number be h(x, ri), and let Urn h(x, n) = 0. Then 

n 

lim YlKh n)Anx = 0. 
rc —>oo 1 

In a recent paper f the above lemma was stated in terms 
of area as a geometric theorem and used to develop the 
theorems on definite integrals of fundamental importance in 
the integral calculus. In addition, applications were given to 
the transformation of a double integral by change of variables 
and to the Fredholm method of solution of an integral equation. 

A proof based on a generalization of a theorem due to W. 
H. Young f has been given by R. L. Moore.§ For the proof 
of the above lemma, however, it is sufficient to use Arzelà's || 
"lemma fondamentale" which may be stated in terms of the 

* Presented to the Society, September 7, 1922. 
t A simple form of DuhameVs theorem and some new applications, 

AMERICAN MATHEMATICAL MONTHLY, vol. 29 (1922), p. 239. 

X Open sets and the theory of content, PROCEEDINGS OP THE LONDON 
SOCIETY, (2), vol. 2 (1904), pp. 20-22. 

§ On DuhameVs theorem. ANNALS OP MATHEMATICS, (2), vol. 13 (1912), 
p. 163. 

|| Un teorema intorno alle serie di funzioni, LINCEI RENDICONTI, (4), 
vol. 1 (1885), pp. 262-267. 
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notation of the above theorem as follows : 

If for each n, I(ri) = XI I (mu ri), where m* is a positive 
i 

integer such that 
1 ~ mi < m2 < • • • < mk ~ n, 

and I S I(ri) > S > 0 for every n, there is at least one point 
P which is common to an infinite number of the I(n)'s. 

The proof of the lemma may also be based on the following 
theorem of Osgood.* 

If sn(x) is continuous in a ^ x ^ b and converges when 
n - • oo for every x in the interval, and if \sn(x) | S M for all 
values of n = 1, 2, • • • and x in a ^ x ^ b, where M is a 
constant, then 

f*b r+b 

lim I sn(x)dx = I Km sn(x)dx. 
n-+co Ja Ja n-+co 

This theorem is applied as follows. On I(i, ri) as base erect 
an isosceles triangle whose altitude is 2h(i, ri). The equal legs 
of these triangles form the graph of sn(x). Identify 

]T h(i, ri)Anx = I sn(x)dx. 
1 Ja 

Finally note that limw^oo sn(x) = 0 for every fixed value 
of x, and the lemma is proved. 

Other proofs of Osgood's theorem have been given by F. 
Riesz,f Bieberbach,J and Landau.§ The method given by 
Landau is substantially that given by Moore (loc. cit.) and 
makes use of Arzelà's "lemma fondamentale" (loc. cit.). 
The proof by Bieberbach is essentially the same as that of 
Landau, with the exception that a simplified proof of Arzelà's 
theorem is included. The method of Riesz is more elementary 
and has suggested the proof given in this note. 

I t is to be noticed mutatis mutandis that Osgood's theorem 

* On non-uniform convergence and integration of a series term by term,, 
AMERICAN JOURNAL, vol. 19 (1897), p . 188. 

f Ueber Integration unendlicher Folgen, JAHRESBERICHT DER V E R E I N I -
GUNG, vol. 26 (1917-18), pp. 274-278. 

% Ueber einen Osgoodschen Satz aus der Integralrechnung, MATHEMA
TISCHE ZEITSCHRIPT, vol. 2 (1918), pp. 156-157. 

§ Ein Satz ueber Riemannsche Integrale, MATHEMATISCHE ZEITSCHRIFT, 
vol. 2 (1918), pp. 350-351. 
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may be regarded as a corollary of the lemma of this note. 
It would seem to be more natural to establish the lemma 
stated above by elementary methods and derive from it the 
properties of the Riemann integral, of which the theorem of 
Osgood would be one. 

We proceed to the proof. Let 
n 

ƒ0) = J^\h(i, n)\Anx. 

Then 
n 

f(n) ^|X>0', n)Anx\^ 0. 
If lim^^^ f(n) = 0 is proved, the lemma is established. 

CASE 1. Let | h(x, n+ 1) | = | h(x, n) | for every fixed x in 
L Then f(n) ^ f(n + 1) ^ 0, or f (ri) is a monotonically non-
increasing function of n. Hence 

lim/O) = A^O. 

Divide I into two equal parts. Then | h(i2, 2) | A2x ^ A/2, 
where i2 has at least one of the two values, i = 1,2. Divide 
I(i2, 2) into two equal parts. Then \h(n, 4) |A4.r ^ A/22, 
where i4 has at least one value of the set 1, 2, 3, 4. If this 
process be continued h times, we have \h(im, m) \Amx ^ A/m, 
where m = 2k and im has at least one value of the set 1, 2, 
• • -, 2k. But Amx = (b— a)/m. Hence A ^ | h(im, m) | (6—a). 

The closed sub-intervals I(i2i 2), I(i4, 4), • • -, I(im, m) are 
so related that each is contained in the preceding, and, as 
n increases without limit, Amx approaches zero. Therefore 
there exists a point P of I whose abscissa is x such that P is 
common to all these sub-intervals. Hence h(i2, 2), h(u, 4), 
• • • form a set of numbers h(x, n) corresponding to x. But 
linv^oo | h(x, n) j = 0. Hence 4̂ = 0. This same method 
with a slight modification can be used for this case if the 
length of the subdivisions are unequal. 

CASE 2. For the general case, let h(x, n, m) for n ^ vibe 
the greatest of the numbers \h(x, ri)\, \h(x, w + 1)|, •••, 
\h(x, m)\. Form 

n 

<f)(n, m) = ^h(i, n> m)Anx, 



222 H. J. ETTLINGER [May, 

where h(i, n, m)Anx is the area of the rectangles whose bases 
fill up I(i, ri) and whose heights h(i, n, m) are chosen so as to 
satisfy the preceding condition for each x in I(i, ri). Now 
h(x, n, m) ^ M for all values of m and n ĝ m. Hence 

cj>(n, m) ^ M(b — a). 
For fixed x and n, h(x, n, m) ^ h(x, n9 m + 1). Hence 

<t>(n, m) â 4>{n} m + 1). 
So that for a fixed n, <f>{n, m) is a monotonically non-
decreasing function of m. Hence lim^^oo <t>(n, m) = H(ri) 
^ M(6 — a), and 
(1) 0 0 , m) m H (ri). 
But f (ri) =̂ 0(n, m), or f (ri) ^ i7(n). Hence lim^^oo £T(n) = 0 
will carry with it lim,^*, f (ri) = 0. 

Given 5 > 0 and arbitrarily small, define a sequence of 
positive integers, m», to satisfy the inequality 

(2) 4>(i, m%) S #00 - 1 . • (i = 1, 2, . . . , ri). 

Since 0(i, m) S H(i) — (8/2*) for m > m» we may choose the 
set mi to satisfy mi < m2 < m3 < • • • < mn < • • • . Let 
h(x, ri) denote the smallest of the numbers h(x, 1, mi), 
h(x, 2, m2), • • -, h(x, n, mn). Form 

1 

where, as above, h(i, ri)Anx is the area of the rectangles whose 
bases fill up I(i, ri) and whose heights h(i, ri) are chosen so as 
to satisfy the preceding condition for each x in I(i, ri). 

We shall prove by induction that 

(3) ^n)>H(n)-i^l-^y 

For n = 1 we have h(x, 1) = h(x, 1, m), and hence 0(1, mi) 
s ^(1). Hence by (2), (3) is true for n = 1. If (3) is not 
true for every positive integer, let k be the first integer for 
which it is not true. Then (3) is true for n — h — 1, or 

(4) (̂fc _ i) > # ( & _ i) _ s ( i - _ ! _ ) . 

Now _ _̂  
(5) h(x, h) rg h(x, h — 1), and A(.r, 7C) S A(x, fc, m&). 
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But 
(6) h(x, k — 1) S h(x, k — 1, m&-i) ^ h(x, k — 1, m&). 
Compare 

h(x, k - 1) - Â(s, ft) S 0 
and 

h(x, k — 1, m*)— A(.r, A:, m&) ^ 0. 
If A(#, & — 1) =ü A(£, A;, m*), then A(#, & — 1) — A(#, &) = 0, 
and hence in this case 

h(x, k — 1) — h(x, k) S A(̂ ', & — 1, ra&) — h(x, k, mk). 
If h(x, k — 1) > A(.r, &, m&), then 
(7) h(x, k) = A(#, &, mk). 
Subtracting (7) from (6), we have 

h(x, k — 1) — h(x, k) ^ h(x, k — 1, m&) — A(;r, fc, m*). 

Hence in every case 

(8) h(x} k) S A (o:, /c — 1) + Afe k, mk) — A(#, & — 1, m*), 

for every x in J. Then 

(9) f(Jc) i= *(fc - 1) + 0(fc, mk) - 0(fc - 1, m,). 

By (4), (2), and (1) we may strengthen (9): 

M) S H(k- 1) - s ( l - ~ ) + #(&) - A - H(k- 1), 

or 

This proves (3). Now strengthen (3) and write 

(10) 4,(71) > jff(w) - S. 
But 
(11) h(x, n) ^ A(#> n, m„). 
Also 
(12) A(^ n, m) = | A(#, *>(#)) | 

where n rg *>(#) ^ mw and lim^^^ */(#) = oo. 
Now h{x, n) for every fixed x in I is a monotonically non-

increasing function by (5), and lim,^*, h(x, n) = 0 by (11) 
and (12). Hence we have, by Case 1, lim,^*, \p(ri) = 0 and 
l i n w » H(n) = 0, by (10). 
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