GROUP OF A SET OF SIMULTANEOUS ALGEBRAIC EQUATIONS*

BY LOUIS WEISNER

1. Introduction. Consider a system of m independent and consistent algebraic equations in m variables

$$
\begin{equation*}
f_{k}\left(z_{1}, \cdots, z_{m}\right)=0, \quad(k=1, \cdots, m) \tag{1}
\end{equation*}
$$

Let the roots of this system of equations be $\left(z_{1}, \ldots z_{m a}\right)$ $(a=1, \cdots, n)$. We assume that each $z_{p \alpha}$ is finite. Therefore by a process of elimination we obtain equations

$$
\begin{equation*}
F_{p}\left(z_{p}\right)=0, \quad(p=1, \cdots, m) \tag{2}
\end{equation*}
$$

each of which is of degree n and involves only one of the unknowns. None of these equations vanishes identically, since equations (1) are independent. We assume that none of equations (2) has a multiple root.

A rational domain R which includes the coefficients of (1) includes the coefficients of (2). It will be shown in this paper that the groups of equations (2) relative to R are identical, except for the symbols which they affect.
2. Elimination of z_{m}. On eliminating z_{m} from (1) we obtain $m-1$ equations involving z_{1}, \cdots, z_{m-1}. Now z_{m-1} cannot be absent from all of these equations; for in that case we would have $m-1$ equations involving fewer than $m-1$ unknowns, and equations (1) would not be consistent and independent as assumed. Repeating this argument we can find two independent and consistent equations

$$
\begin{equation*}
g_{1}\left(z_{1}, z_{2}\right)=0, \quad g_{2}\left(z_{1}, z_{2}\right)=0 \tag{3}
\end{equation*}
$$

involving the unknowns z_{1}, z_{2} (or any other pair of the unknowns). This elimination can always be carried out in such a way that if $\left(z_{1 a}, z_{2 \alpha}\right)$ is a root of equations (3), then there is a root $\left(z_{1 a}, z_{2 a}, \cdots, z_{m a}\right)$ of equations (1).

[^0]3. Relations of Rationality. Let R^{\prime} be the domain obtained by adjoining $z_{2 a}$ to R. By equations (3), $g_{1}\left(z_{1 a}, z_{2 a}\right)$ and $g_{2}\left(z_{1 a}, z_{2 a}\right)$ are rational functions of a root of $F_{1}\left(z_{1}\right)=0$, with coefficients in R^{\prime} which equal a number (zero) in R^{\prime}; they are therefore unaltered in value by the substitutions of the group H of $F_{1}\left(z_{1}\right)=0$ relative to R^{\prime}. Suppose that a substitution of H changes $z_{1 a}$ to $z_{1 b}$. Applying this substitution to $g_{1}\left(z_{1 a}, z_{2 a}\right)$ and $g_{2}\left(z_{1 a}, z_{2 a}\right)$ we obtain $g_{1}\left(z_{1 b}, z_{2 a}\right)=0$ and $g_{2}\left(z_{1 b}, z_{2 a}\right)=0$. By $\S 2$, there are two roots $\left(z_{1 a}, z_{2 a}, \cdots, z_{m a}\right)$ and $\left(z_{1 b}, z_{2 a}, \cdots, z_{m b}\right)$ of equations (1) with the same value for z_{2}. Therefore $F_{2}\left(z_{2}\right)=0$ has a multiple root, contrary to assumption. It follows that H leaves $z_{1 a}$ fixed. Hence $z_{1 a}$ is in R^{\prime} and is a rational function of $z_{2 a}$ with coefficients in R.

Theorem 1. If $\left(z_{1 a}, z_{2 a}, \cdots, z_{m a}\right)$ is a root of equations (1), $z_{p a}$ equals a rational function of $z_{q a}$ with coefficients in $R(p, q=1,2, \cdots, m)^{*}$.
4. Group Relations. Let us regard G_{p}, the group of $F_{p}\left(z_{p}\right)=0$ relative to R, as a substitution group not on the roots $z_{p 1}, z_{p 2}, \cdots, z_{p n}$, but on their second subscripts. Thus (12) simultaneously interchanges z_{11} and z_{12}, z_{21} and z_{22} etc. With this understanding we state our main result.

Theorem 2. The groups of equations (2) relative to R are identical.

We shall prove G_{1} identical with G_{2}. By Theorem 1, $z_{p a}=\varphi_{p a}\left(z_{1 a}\right)$ where $\varphi_{p a}$ is a rational function with coefficients in R. Hence by equations (1)
(4) $f_{k}\left[z_{1 a}, \varphi_{2 a}\left(z_{1 a}\right), \cdots, \varphi_{m a}\left(z_{1 a}\right)\right]=0,\binom{k=1,2, \cdots, m}{a=1,2, \cdots, n}$

[^1]Now suppose a substitution of G_{1} replaces $z_{1 a}$ by $z_{1 b}$. Then equations (4) become

$$
\begin{equation*}
f_{k}\left[z_{1 b}, \varphi_{2 a}\left(z_{1 b}\right), \cdots, \varphi_{m a}\left(z_{1 b}\right)\right]=0 \tag{5}
\end{equation*}
$$

Therefore $\left[z_{1 b}, \varphi_{2 a}\left(z_{1 b}\right), \cdots, \varphi_{m a}\left(z_{1 b}\right)\right.$] is a root of (1). But $\left[z_{1 b}, \varphi_{2 b}\left(z_{1 b}\right), \cdots, \varphi_{m b}\left(z_{1 b}\right)\right]$ is a root of (1), and (2) has no multiple root. Hence $\varphi_{p a}\left(z_{1 b}\right)=\varphi_{p b}\left(z_{1 b}\right)$. We may therefore omit the second subscript of $\varphi_{p a}$ and write

$$
\begin{equation*}
z_{p a}=\varphi_{p}\left(z_{1 a}\right) \tag{6}
\end{equation*}
$$

Now let $\psi\left(z_{21}, \cdots, z_{2 n}\right)$ be a rational function with coefficients in R of the roots of $F_{2}\left(z_{2}\right)=0$ which equals a number in R. Then by (6) $\psi\left[\varphi_{2}\left(z_{11}\right), \cdots, \varphi_{2}\left(z_{1 n}\right)\right]$ is a rational function with coefficients in R of the roots of $F_{1}\left(z_{1}\right)=0$ which equals a number in R and hence is unaltered by G_{1}. But on applying a substitution of G to $\psi\left[\varphi_{2}\left(z_{11}\right), \cdots, \varphi_{2}\left(z_{1 n}\right)\right]$ we find that, in virtue of (6), $z_{21}, \cdots, z_{2 n}$ undergo a similar substitution. Therefore $\psi\left(z_{21}, \cdots, z_{2 n}\right)$ is unaltered by every substitution of G_{1}. It follows that G_{1} is a subgroup of G_{2}. Similarly G_{2} is a subgroup of G_{1}. Hence G_{1} and G_{2} are identical.
5. A Necessary and Sufficient Condition. We shall call $G=G_{p}(p=1, \cdots, m)$ the group of equations (1) relative to R. Let $\psi\left(z_{11}, \cdots, z_{1 n} ; \cdots ; z_{m 1}, \cdots, z_{m n}\right)$ be unaltered in value by all the substitutions of G. Then so is $\psi\left[z_{11}, \cdots, z_{1 n}\right.$; $\left.\cdots ; \varphi_{m}\left(z_{11}\right), \cdots, \varphi_{m}\left(z_{1 n}\right)\right]$. But the latter is a rational function with coefficients in R of the roots of $F_{1}\left(z_{1}\right)=0$, which is unaltered by G. Hence it equals a number in R. Conversely, let $\psi\left(z_{11}, \cdots, z_{1 n} ; \cdots ; z_{m 1}, \cdots, z_{m n}\right)$ equal a number in R. Then so does $\psi\left[z_{11}, \cdots, z_{1 n} ; \cdots ; \varphi_{m}\left(z_{11}\right), \cdots, \varphi_{m}\left(z_{1 n}\right)\right]$. Since the latter is unaltered by G, so is the former.

Theorem 3. A necessary and sufficient condition that a rational function with coefficients in R, of the numbers satisfying a set of independent and consistent algebraic equations with coefficients in R, be unaltered in value by the group of the equations relative to R, is that it equal a number in R.

The University of Rochester

[^0]: * Presented to the Society, December 27, 1923.

[^1]: * The following is a proof which might be offered of this theorem: Eliminate every power of z_{1} from equations (3) except the first; then z_{1} is expressed as a rational function of z_{2} with coefficients in R. The objection to this proof is that in the process of elimination the first power of z_{1} may be incidentally eliminated. It is easy to make up examples where this actually occurs. I believe the proof given above is free from objection.

