A TRIVIAL TAUBERIAN THEOREM.*

BY W. A. HURWITZ

The name Tauberian was introduced by Hardy ${ }^{\dagger}$ to describe a very interesting type of theorem in connection with summable series; he and others have enunciated a considerable number of such theorems bearing on various specific definitions of summability. We may indicate the general character of a Tauberian theorem as follows. The ordinary questions on summability consider two related sequences (or other functions) and ask whether it will be true that one sequence possesses a limit whenever the other possesses a limit, the limits being the same; a Tauberian theorem appears, on the other hand, only if this is untrue, and then asserts that the one sequence possesses a limit provided the other sequence both possesses a limit and satisfies some additional condition restricting its rate of increase. The interest of a Tauberian theorem lies particularly in the character of this additional condition, which takes different forms in different cases. Thus, if the condition is to be imposed on the term u_{n} of a series, it may take any of the forms (for which I write alternative notations)

$$
\begin{array}{ll}
\left|u_{n}\right|<K f_{n}: & u_{n}=O\left(f_{n}\right), \\
u_{n}<K f_{n}: & u_{n}=O_{+}\left(f_{n}\right), \\
u_{n}>-K f_{n}: & u_{n}=O_{-}\left(f_{n}\right), \\
u_{n} / f_{n} \rightarrow 0: & u_{n}=o\left(f_{n}\right), \\
\limsup _{n \rightarrow \infty} u_{n} / f_{n}=0: & u_{n}=o_{+}\left(f_{n}\right), \\
\underset{n \rightarrow \infty}{\lim \inf } u_{n} / f_{n}=0: & u_{n}=o_{-}\left(f_{n}\right) ;
\end{array}
$$

* Presented to the Society, December 30, 1924.
${ }^{+}$With respect to the name, see Hardy and Littlewood, Proceedings of the London Society, vol. 2, (1912-13), p. 1.
in each case K is a positive constant and (f_{n}) a given sequence of positive elements.

It has seemed to me worth while to discuss a case so trivial that the reasoning is transparent, but involving a parameter in such a way that for various values of the parameter it exhibits several forms of the condition, with assurance that the best form for each value has been chosen.*

Consider then the series

$$
u_{1}+u_{2}+u_{3}+\cdots ;
$$

let

$$
x_{n}=u_{1}+u_{2}+\cdots+u_{n} .
$$

Apply the transformation

$$
\begin{equation*}
y_{1}=\frac{x_{1}}{1-\alpha} ; \quad y_{n}=\frac{x_{n}-\alpha x_{n-1}}{1-\alpha}, \quad n>1, \tag{A}
\end{equation*}
$$

where α is any real number other than 1 . It is at once obvious that (A) is regular: whenever x_{n} has a limit, y_{n} has the same limit. \dagger

We now inquire whether the existence of a limit for y_{n} implies the existence of a limit for x_{n}. For the inverse transformation we find
$\left(A^{-1}\right) \quad x_{n}=(1-\alpha)\left[y_{n}+\alpha y_{n-1}+\alpha^{2} y_{n-2}+\cdots+\alpha^{n-1} y_{1}\right]$.
This is of the form $x_{n}=\sum a_{n, k} y_{k}$, with

$$
a_{n, k}=(1-\alpha) \alpha^{n-k}, k \leqq n ; a_{n k}=0, k>n .
$$

Thus, by the Silverman-Toeplitz Theorem, \dagger if A^{-1} is to be regular, $|\alpha|<1$; and if $|\alpha|<1$, since

$$
\sum_{k=1}^{n} a_{n, k}=1-\alpha^{n} \rightarrow 1 ; \sum_{k=1}^{n}\left|a_{n, k}\right|=\frac{|1-\alpha|}{1-|\alpha|}\left[1-|\alpha|^{n}\right]<\frac{|1-\alpha|}{1-|\alpha|},
$$

[^0]by the same theorem, A^{-1} will be regular. In case, then, $|\alpha|<1, A$ is equivalent to convergence; no Tauberian condition is required to insure that if y_{n} has a limit, x_{n} shall have the same limit.

Suppose now $|\alpha|>1$. Write

$$
\lambda=(1-\alpha)\left[\frac{y_{1}}{\alpha}+\frac{y_{2}}{\alpha^{2}}+\cdots\right]
$$

the series converges, since y_{n} is bounded. We find

$$
x_{n}-\lambda \alpha^{n}=(\alpha-1)\left[\frac{y_{n+1}}{\alpha}+\frac{y_{n+2}}{\alpha^{2}}+\cdots\right] .
$$

The right-hand side of this equation is in the form $\sum b_{n, k} y_{k}$, where

$$
b_{n, k}=0, \quad k \leqq n ; \quad b_{n, k}=\frac{\alpha-1}{\alpha^{k-n}}, \quad k>n
$$

Hence

$$
\lim _{n \rightarrow \infty} b_{n, k}=0 ; \quad \sum_{k=1}^{\infty} b_{n, k}=1 ; \quad \sum_{k=1}^{\infty}\left|b_{n, k}\right|=\frac{|\alpha-1|}{|\alpha|-1}
$$

and by the Hildebrandt-Carmichael generalization* of the Silverman-Toeplitz theorem, the transformation $\left\|b_{n, k}\right\|$ is regular. Since $y_{n} \rightarrow l$,

$$
x_{n}-\lambda \alpha^{n} \rightarrow l,
$$

and

$$
u_{n}-\lambda \alpha^{n-1}(\alpha-1) \rightarrow 0
$$

We now consider separately the cases $\alpha>1, \alpha<-1$.
Let $\alpha>1$. Then if $\lambda \neq 0, x_{n} \rightarrow(\operatorname{sgn} \lambda) \infty, u_{n} \rightarrow(\operatorname{sgn} \lambda) \infty$; if $\lambda=0, x_{n} \rightarrow l, u_{n} \rightarrow 0$. In order to insure by a condition on u_{n} that $x_{n} \rightarrow l$ we must prevent u_{n} from becoming definitely (i. e., with one sign) infinite. This is secured by demanding that u_{n} be bounded both above and below:

$$
\left|u_{n}\right|<K: \quad u_{n}=O(1)
$$

[^1]Let $\alpha<-1$. Then if $\lambda \neq 0, x_{n}$ and u_{n} each oscillate between $+\infty$ and $-\infty$; if $\lambda=0, x_{n} \rightarrow l, u_{n} \rightarrow 0$. In order to insure that $x_{n} \rightarrow l$, it suffices to bound u_{n} in one direction only; that is, to impose one of the conditions

$$
\begin{array}{ll}
u_{n}<K: & u_{n}=O_{+}(1) \\
u_{n}>-K: & u_{n}=O_{-}(1)
\end{array}
$$

There remains the case $\alpha=-1$. Here

$$
\begin{equation*}
y_{n}=\frac{x_{n}+x_{n-1}}{2}, \quad n>1 \tag{1}
\end{equation*}
$$

Neither of the preceding methods applies. The failure, furthermore, lies not merely in the proof, but in the facts. Conditions of the forms O, O_{+}, O_{-}are not sufficient; it is possible for y_{n} to possess a limit while x_{n} and u_{n} oscillate finitely or infinitely. For instance, let

$$
u_{1}=l+a: \quad u_{n}=(-1)^{n-1} 2 a, \quad n>1 ;
$$

where $a>0$. Then

$$
\begin{aligned}
& x_{n}=l+(-1)^{n-1} a ; \\
& y_{1}=\frac{l+a}{2} ; \quad y_{n}=l, \quad n>1 .
\end{aligned}
$$

If we call $\lim \sup x_{n}=\bar{x}, \lim \inf x_{n}=\underline{\dot{x}}$ (whether finite or infinite), with similar notations for u_{n},

$$
y_{n} \rightarrow l ; \quad \bar{x}=l+a, \quad \underline{x}=l-a ; \quad \bar{u}=2 a, \quad \underline{u}=-2 a .
$$

Again, let

$$
y_{n}=\frac{(-1)^{n-1}}{n}
$$

then

$$
\begin{gathered}
x_{n}=(-1)^{n-1} 2\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) \\
u_{n}(=-1)^{n-1}\left[-\frac{2}{n}+4\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)\right]
\end{gathered}
$$

so that

$$
y_{n} \rightarrow 0 ; \bar{x}=+\infty ; \underline{x}=-\infty ; \bar{u}=+\infty, \underline{u}=-\infty .
$$

To deduce an appropriate condition in this case, note that

$$
\begin{equation*}
y_{n}=x_{n}-\frac{1}{2} u_{n} ; \quad y_{n}=x_{n-1}+\frac{1}{2} u_{n}, \quad n>1 . \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\begin{array}{ll}
\bar{x}=2 l-\underline{x} ; & \\
\bar{x}=l+\frac{1}{2} \bar{u}, \quad \bar{x}=l-\frac{1}{2} \underline{u} ; \\
\underline{x}=l+\frac{1}{2} \underline{u}, \quad \underline{x}=l-\frac{1}{2} \bar{u} .
\end{array}
$$

Thus if any one of the four limits $\bar{x}, \underline{x}, \bar{u}, \underline{u}$ is finite, all are finite and $\bar{u}=-\underline{u}$. If none are finite, then $\bar{x}=\bar{u}=+\infty, \underline{x}=\underline{u}=-\infty$. In order to be able to assert that $x_{n} \rightarrow l$, we must have $\bar{x}=\underline{x}=l$, hence $\bar{u}=\underline{u}=0$. But if either $\bar{u}=0$ or $\underline{u}=0$, it follows that $\bar{x}=l, \underline{x}=l$, and hence $x_{n} \rightarrow l$. Therefore it suffices in this case to impose one of the conditions

$$
\begin{array}{ll}
\limsup _{n \rightarrow \infty} u_{n}=0: & u_{n}=o_{+}(1) ; \\
\liminf _{n \rightarrow \infty} u_{n}=0: & u_{n}=o_{-}(1) .
\end{array}
$$

The results may be collected as follows:
For the transformation A, if y_{n} has the limit l, x_{n} will also have the limit l : .
in case $\alpha<-1$, if $u_{n}=O_{+}$(1) or $u_{n}=O_{-}(1)$;
in case $\alpha=-1$, if $u_{n}=o_{+}(1)$ or $u_{n}=o_{-}(1)$;
in case $-1<\alpha<1$, without any Tauberian condition ;
in case $\alpha>1$, if $u_{n}=O(1)$.
Thus the cases of bilateral O-condition, unilateral O-condition, and absence of Tauberian condition occur for whole intervals of parameter values, separated by isolated points which are characterized by o-conditions or by the breaking down of the transformation. It is also of interest that for $\alpha>1$, the form of condition given may be replaced by the formally weaker condition,

$$
\liminf _{n \rightarrow \infty} u_{n} \neq+\infty \quad \text { and } \quad \limsup _{n \rightarrow \infty} u_{n} \neq-\infty ;
$$

and for $\alpha=-1$, the condition given may be replaced by
$\lim _{n \rightarrow \infty} u_{n}$ exists.
Extensions can be made by allowing y_{n} to involve more than two consecutive x 's. If for example

$$
y_{n}=\frac{x_{n}+\alpha x_{n-1}+\beta x_{n-2}}{1+\alpha+\beta},
$$

the different conditions depend on the location of the roots (real or complex) of the polynomial $z^{2}+\alpha z+\beta$ with respect to the unit circle $|z|=1$. No new kinds of result appear, and the analysis is less transparent ; as I consider the Tauberian theorem of this note to have no intrinsic importance and to be of interest merely as an indication of general relationship of Tauberian conditions to one another, I omit the discussion of the extensions mentioned.

Cornell University

[^0]: * A recent paper by R. Schmidt, Mathematische Zeitschrift, vol. 22 (1925), pp. 89-152, for the first time undertakes a systematic general study of Tauberian theorems. Schmidt's work yields as special cases some, but not all, of the results of this note.
 \dagger This holds also if α is complex.
 \ddagger See the author's Report on topics in the theory of divergent series, this Bulletin, vol. 28 (1922), p. 19.

[^1]: * See the author's Report, loc. cit., p. 20; also Hildebrandt, this BullETIN, vol. 29 (1923), p. 314.

