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A TRIVIAL TAUBERIAN THEOREM.* 

BY W. A. HURWITZ 

The name Tauberian was introduced by Hardy* to de
scribe a very interesting type of theorem in connection with 
summable series ; he and others have enunciated a consider
able number of such theorems bearing on various specific 
definitions of summability. We may indicate the general 
character of a Tauberian theorem as follows. The ordinary 
questions on summability consider two related sequences (or 
other functions) and ask whether it will be true that one 
sequence possesses a limit whenever the other possesses a 
limit, the limits being the same ; a Tauberian theorem ap
pears, on the other hand, only if this is untrue, and then as
serts that the one sequence possesses a limit provided the 
other sequence both possesses a limit and satisfies some ad
ditional condition restricting its rate of increase. The interest 
of a Tauberian theorem lies particularly in the character of 
this additional condition, which takes different forms in dif
ferent cases. Thus, if the condition is to be imposed on the 
term un of a series, it may take any of the forms (for which 
I write alternative notations) 

\un\ <Kfn : un = 0(fn) , 

un<Kfn : un = 0+{fn) , 

un>-Kfn : un = 0-(fn) , 

Un/fn-^0 l Un=0(fn) , 

lim sup un/fn = 0 : un = o+(fn) , 
n->oo 

liminf un/fn = 0 : un = o^(fn) ; 

* Presented to the Society, December 30, 1924. 
* With respect to the name, see Hardy and Littlewood, PROCEEDINGS 

OF THE LONDON SOCIETY, vol. 2, (1912-13), p. 1. 
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in each case K is a positive constant and (/n) a given sequence 
of positive elements. 

I t has seemed to me worth while to discuss a case so trivial 
that the reasoning is transparent, but involving a parameter 
in such a way that for various values of the parameter it 
exhibits several forms of the condition, with assurance that 
the best form for each value has been chosen.* 

Consider then the series 

Ui+u2+Uz+ • • • ; 
let 

Apply the transformation 

X\ Xn OcXn— 1 

(A) yx = - ; yn = , n>l , 
1—a 1—a 

where a is any real number other than 1. It is at once obvious 
that (A) is regular : whenever Xn nas a limit, yn has the same 
limit.* 

We now inquire whether the existence of a limit for yn 

implies the existence of a limit for xn. For the inverse trans
formation we find 

{A"1) Xn=(l-a)[yn+ayn„1+a2yn„2+ • • • +an~lyi] . 

This is of the form xn— ^anikyk, with 

antk = (l—a)oLn-k
} kSn\an k = Q,k>n. 

Thus, by the Silverman-Toeplitz Theorem,% if A"1 is to be 
regular, \a\ < 1 ; and if | a | < 1, since 

n n 11—al 11— al 
E a ^ - l - a — l ; Z k n , * | = f — ^ [ l - | a M < l — ' 
*»i *-i i - M i - l a l 
* A recent paper by R. Schmidt, MATHEMATISCHE ZEITSCHRIFT, 

vol. 22 (1925), pp. 89-152, for the first time undertakes a systematic 
general study of Tauberian theorems. Schmidt's work yields as special 
cases some, but not all, of the results of this note. 

* This holds also if a is complex. 
% See the author's Report on topics in the theory of divergent series, this 

BULLETIN, vol. 28 (1922), p. 19. 
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by the same theorem, A~l will be regular. In case, then, 
| a | < 1 , A is equivalent to convergence; no Tauberian con
dition is required to insure that if yn has a limit, xn shall 
have the same limit. 

Suppose now | a | > l . Write 

x _ ( , ^ , f » + 4 + . . . i . 
La a2 J 

the series converges, since yn is bounded. We find 

, „ _ X a B = ( a _ 1 ) r z ! ± ! + ^ + . . . ] . 
L a a2 J 

The right-hand side of this equation is in the form ^bniJcyk, 
where 

bn,k = 0 , k<n; bn.k = , k > n . 
(xJc~~n 

Hence 
00 00 \(X 1 I 

lim bn,k = 0 ; ^bn,k = 1 ; S I*».*I== 7~~\—7 î 
»-»°° *-i *-i |ce I — 1 

and by the Hi ldebrandt -Carmichae l generalization* of the 

Si lverman-Toepl i tz theorem, the t ransformat ion | \bn,k\ | is 

regular. Since yn—» /, 

#n—Xan—>/ , 

and 

We now consider separately the cases a > 1, a < — 1. 
Let a > l . Then if XT^O, #w—>(sgn X)oo, un-*(sgn X)oo ; 

if X = 0, xn—>l, un—>0. In order to insure by a condition on 
un that #n—>/ we must prevent un from becoming definitely 
(i. e., with one sign) infinite. This is secured by demanding 
that un be bounded both above and below : 

\un\<K : «n = 0 ( l ) . 

* See the author's Report, loc. cit., p. 20; also Hildebrandt, this BULL
ETIN, vol. 29 (1923), p. 314. 
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Let a < — 1. Then if \ ^ 0 , xn and un each oscillate between 
+ 00 and — <*> ; if X = 0, xn—>l, un—>0. In order to insure that 
xn—>/, it suffices to bound un in one direction only ; that is, 
to impose one of the conditions 

un<K : un = 0+(l) ; 

un>—K : un = 0-(l) . 

There remains the case a = — 1. Here 

Xn~]~Xn—\ 

(1) y n « , * > 1 . 

Neither of the preceding methods applies. The failure, 
furthermore, lies not merely in the proof, but in the facts. 
Conditions of the forms 0, 0+, 0_ are not sufficient ; it is 
possible for yn to possess a limit while xn and un oscillate 
finitely or infinitely. For instance, let 

Ui = l+a : un = (— l)n~~l2a , n>\ ; 

where a>0. Then 

l + a 
^ i = — — ; ?n = / , n>l . 

If we call lim sup xn = x, lim inf xn = # (whether finite or in
finite), with similar notations for un, 

yn—>l; x=l+a, %=l—a; ü=2a , u=— 2a» 

Again, let 
(_Dn-l 

yn--

then 

\ 2 n / 

„ ( = _ 1 ) . - , [ _ i + 4 ( 1 + i + . . . + ± ) ] ; 
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so that 

3V~»0 ; # = + oo ; # = — oo ; ü= + oo , u= — <x> . 

To deduce an appropriate condition in this case, note that 

(2) yn = Xn — ̂ Un ', yn = Xn-l+%Un , fl> 1 . 

From (1) and (2), we have 

X === /àV X y 

x = l+^ü , x — l—\u ; 

X—l+TfU , X = l — \ ü . 

Thus if any one of the four limits x} x, ü, u is finite, all are finite 
and ü = — u. If none are finite, then x — u— -\-^o , x — u= — oo. 
In order to be able to assert that xn—>/, we must have x = x = l, 
hence ü — u — 0. But if either ü = 0 or u = 0, it follows that 
x — l, x_ = l, and hence xn—>l. Therefore it suffices in this 
case to impose one of the conditions 

l imsup^ n = 0 : un = o+(l) ; 
n—»oo 

lim inf un = 0 : un = o-(l) . 
n-»oo 

The results may be collected as follows : 
For the transformation A, if yn has the limit /, xn will also 

have the limit I : , 
in case a< — 1, if un = 0+{\) or un = 0„(l) ; 
in case a= — 1, if un = o+(l) or un = o_(l) ; 
in case — 1 < a < l , without any Tauberian condition ; 
in case ce>l, if un = 0(l). 
Thus the cases of bilateral O-condition, unilateral O-con-

dition, and absence of Tauberian condition occur for whole 
intervals of parameter values, separated by isolated points 
which are characterized by ^-conditions or by the breaking 
down of the transformation. I t is also of interest that for 
a > l , the form of condition given may be replaced by the 
formally weaker condition, 

lim inf un 9e + oo and lim sup un 9e — oo ; 
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and for a = — 1, the condition given may be replaced by 

lim un exists. 

Extensions can be made by allowing yn to involve more 
than two consecutive x's. If for example 

Xn+<XXn-l+PXn-2 

the different conditions depend on the location of the roots 
(real or complex) of the polynomial z2+az+(3 with respect 
to the unit circle \z\ = 1 . No new kinds of result appear, 
and the analysis is less transparent ; as I consider the Tauberian 
theorem of this note to have no intrinsic importance and to be 
of interest merely as an indication of general relationship of 
Tauberian conditions to one another, I omit the discussion 
of the extensions mentioned. 
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