GENERALIZATION OF LAGRANGE'S THEOREM

BY LOUIS WEISNER

1. Introduction. The following theorem due to Lagrange is of considerable importance in the theory of equations.

Lagrange's Theorem. If the group to which the rational function $\psi\left(x_{1}, \cdots, x_{n}\right)$ belongs is a subgroup of the group to which the rational function $\phi\left(x_{1}, \cdots, x_{n}\right)$ belongs, then ϕ equals a rational function of ψ and the elementary symmetric functions of the variables x_{1}, \cdots, x_{n}.

In this paper I prove a similar theorem for sets of variables.
2. Notation and Definitions. Consider the n sets of m variables $x_{1 i}, x_{2 i}, \cdots, x_{m i}(i=1, \cdots, n)$, which may be regarded as coordinates of n points in m-space. By a permutation of these sets of variables we mean a permutation of the points. Thus a permutation which changes $x_{1 i}$ to $x_{1 j}$, also changes $x_{2 i}, \cdots, x_{m i}$ to $x_{2 j}, \cdots, x_{m j}$ respectively. It is simpler to regard the permutation as affecting the second subscripts of the variables, with the above notation, than as affecting the x 's.

A function $\phi\left(x_{11}, x_{21}, \cdots, x_{m 1} ; \cdots ; x_{1 n}, x_{2 n}, \cdots, x_{m n}\right)$ is said to belong to a substitution group G on the symbols $1,2, \cdots, n$, if ϕ is unaltered by every substitution of G and by no substitution on these symbols not contained in G. There exist functions which belong to a given substitution group. In fact, we can construct such functions involving only the variables $x_{11}, x_{12}, \cdots, x_{1 n}$. *
3. A Generalization. We proceed to prove the following generalization of Lagrange's Theorem.

[^0]Theorem. If the group to which the rational function $\psi\left(x_{11}, x_{21}, \cdots, x_{m 1} ; \cdots ; x_{1 n}, x_{2 n}, \cdots, x_{m n}\right)$ belongs, is a subgroup of the group to which the rational function $\phi\left(x_{11}\right.$, $\left.x_{21}, \cdots, x_{m 1} ; \cdots ; x_{1 n}, x_{2 n}, \cdots, x_{m n}\right)$ belongs, then ϕ equals a rational function of ψ and the elementary symmetric functions of the sets of variables $x_{1 i}, x_{2 i}, \cdots, x_{m i},(i=1, \cdots, n)$.

It will suffice to consider the case $m=3$. The elementary symmetric functions of the n triads of variables are defined by*

$$
\begin{array}{r}
p_{i j k}=\sum x_{11} x_{12} \cdots x_{1 i} x_{2,1+i} x_{2,2+i} \cdots x_{2, j+i} x_{3,1+i+j} x_{3,2+i+j} \cdots x_{3, k+i+,} \\
(i+j+k \leqq n) .
\end{array}
$$

With the aid of these functions, we can express any one of the variables $x_{1 i}, x_{2 i}, x_{3 i}$ as a rational function of any one of the others. In fact, \dagger we have

$$
\begin{aligned}
& x_{1 i}=\frac{p_{100} x_{3 i}^{n-1}-p_{101} x_{3 i}^{n-2}+p_{102} x_{3 i}^{n-3}-\cdots}{n x_{3 i}^{n-1}-(n-1) p_{001} x_{3 i}^{n-2}+(n-2) p_{002} x_{3 i}^{n-2}-\cdots} \\
& x_{2 i}=\frac{p_{010} x_{3 i}^{n-1}-p_{011} x_{3 i}^{n-2}+p_{012} x_{3 i}^{n-3}-\cdots}{n x_{3 i}^{n-1}-(n-1) p_{001} x_{3 i}^{n-2}+(n-2) p_{002} x_{3 i}^{n-3}-\cdots} .
\end{aligned}
$$

Hence every function of the triads of variables can be expressed as a function of $x_{31}, x_{32}, \cdots, x_{3 n}$, with coefficients that belong to the symmetric group. In particular, suppose

$$
\begin{aligned}
& \psi\left(x_{11}, x_{21}, x_{31} ; \cdots ; x_{1 n}, x_{2 n}, x_{3 n}\right)=\psi_{1}\left(x_{31}, x_{32}, \cdots, x_{3 n}\right), \\
& \phi\left(x_{11}, x_{21}, x_{31} ; \cdots ; x_{1 n}, x_{2 n}, x_{3 n}\right)=\phi_{1}\left(x_{31}, x_{32}, \cdots, x_{3 n}\right) .
\end{aligned}
$$

Evidently ψ and ψ_{1} belong to the same group H, and ϕ and ϕ_{1} belong to the same group G. As H is a subgroup of G by hypothesis, it follows from Lagrange's Theorem, that ϕ equals a rational function of ψ and the elementary symmetric functions $p_{001}, p_{002}, \cdots, p_{00 n}$. The theorem follows.

The University of Rochester

[^1]
[^0]: * Netto, Substitutionentheorie und ihre Anwendung auf die Algebra, 1882, p. 27.

[^1]: * See Bôcher, Higher Algebra, p. 252.
 \dagger Netto, Vorlesungen über Algebra, vol. II, p. 71.

