ON THE INTEGRO-DIFFERENTIAL EQUATION OF THE BÔCHER TYPE IN THREE-SPACE

BY G. E. RAYNOR

1. Introduction. Bôcher has shown* that if a function $f(x, y)$ is continuous and has continuous first partial derivatives in a region R and satisfies the condition

$$
\int_{C} \frac{\partial f}{\partial n} d s=0
$$

for every circle C lying entirely in R, then $f(x, y)$ is harmonic at each interior point of R. Bôcher treats only functions in two variables and by a method which cannot be directly extended to three-space.

It is the purpose of the present note to show, by a simple modification of the second part of Bôcher's argument, that this result may at once be extended to three-space, and also to investigate the nature of the function f if Bôcher's condition of continuity is somewhat weakened. We shall treat explicitly functions in three variables only, but it will easily be seen that with a slight modification the statements of Theorem II are applicable to two-space as well.

Theorem I. If a function $f(x, y, z)$ is continuous, and has continuous first partial derivatives in a connected finite region R, and is such that the surface integral $\int_{S}(\partial f / \partial n) d s$ vanishes when taken over every sphere S lying in R, then at each interior point of R, f is harmonic; that is, it satisfies Laplace's equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0
$$

at each interior point of R.

[^0]In the preceding integral, as well as in what follows, the derivative $\partial f / \partial n$ is to be taken either toward the interior of S, or toward the exterior of S, throughout the region of integration. Let P be any interior point of R and consider two spheres S_{1} and S_{2} of radii r_{1} and $r_{2}<r_{1}$ with centers at P. By hypothesis, we have

$$
\int_{S} \frac{\partial f}{\partial n} d s=0
$$

or, setting $d s=r^{2} d \omega$, where $d \omega$ is the element of area on the unit sphere with center P,

$$
\int_{S} \frac{\partial f}{\partial n} d \omega=0
$$

It follows that

$$
\begin{equation*}
\int_{r_{2}}^{r_{1}} d r \int_{S} \frac{\partial f}{\partial n} d \omega=0 \tag{1}
\end{equation*}
$$

Because of the continuity of f and its derivatives the order of integrations in the above integral may be inverted and we have

$$
\begin{equation*}
\int_{S_{1}} f d \omega-\int_{S_{2}} f d \omega=0 \tag{2}
\end{equation*}
$$

Let $f(P)$ be the value of f at the point P. Then since f is continuous at P we obtain from (2) by letting r_{2} approach zero,

$$
f(P)=\frac{1}{4 \pi} \int_{S_{1}} f d \omega=\frac{1}{4 \pi r_{1}^{2}} \int_{S_{1}} f d s
$$

We thus see that our function f possesses the so-called meanvalue property, that is, its value at the center of any sphere is the mean of its values on the surface of the sphere.

Consider now the function F which takes the same values as f on S_{1} and which is harmonic interior to S_{1}. This function exists and can be expressed as a Poisson integral. It is well known that F also possesses the mean-value prop-
erty and hence so also does the difference $f-F$. But a continuous function having the mean value property in a closed region R must take its greatest and least values on the boundary of R. Since the difference $f-F$ is identically zero on S_{1} it follows that it is zero everywhere within S_{1} and hence f must be harmonic at P as was to be proved.

It is evident that the original hypothesis that

$$
\int \frac{\partial f}{\partial n} d s=0
$$

about every sphere in R is unnecessarily broad. All that is needed in the above proof is that each point P may be surrounded by a region, no matter how small, which is such that the above integral vanishes when taken over every sphere lying entirely within it.
2. A More General Theorem. We shall now weaken the original condition of continuity on f and suppose that it is continuous at every interior point of R except possibly at a finite number of points $P_{1}, P_{2}, \cdots, P_{i}, \cdots, P_{n}$. We shall refer to these exceptional points in the sequel as the points P_{i}. Our other condition on f now takes the form "about each interior point of R there exists a region M which is such that in its interior $\int(\partial f / \partial n) d s$ evaluated over every sphere which lies in M and does not pass through one of the P_{i} is zero." It is sufficient that if M contains one of the exceptional points, it contains only one.

That f is harmonic at every interior point P of R other than the P_{i} follows readily. About each of the P_{i} as center draw a small sphere S_{i} which does not contain P. Then the region bounded by the S_{i} and the boundary of R is a region of the type considered in Theorem I from which it follows that f is harmonic at P. It thus remains only to consider the nature of f in the neighborhood of any one of the P_{i}.

In a paper presented to the Society, October 31, 1925, the writer has shown that if a function is harmonic at every point
in the deleted neighborhood of a point P it may be expressed in the form

$$
c \frac{1}{r}+\Phi(x, y, z)+V(x, y, z)
$$

in this neighborhood. In this expression c is a constant, r the distance from P to (x, y, z), V a function harmonic everywhere in the neighborhood of P as well as at P itself and Φ a function harmonic in the deleted neighborhood and such that it is either identically zero or else there exist modes of approach to P for which Φ will tend toward plus infinity and also modes of approach for which it will tend toward minus infinity; Φ also possesses the property that its integral over the surface of any sphere with P as center vanishes.

Consider now two spheres S_{1} and S_{2} with center P and radii r_{1} and $r_{2}<r_{1}$. Apply Green's formula to the functions Φ and $1 / r-1 / r_{1}$ for the region bounded by S_{1} and S_{2} and we have

$$
\int_{S_{1} S_{2}}\left\{\left(\frac{1}{r}-\frac{1}{r_{1}}\right) \frac{\partial \Phi}{\partial n}-\frac{\partial}{\partial n}\left(\frac{1}{r}-\frac{1}{r_{1}}\right) \Phi\right\} d s=0
$$

where the normal derivatives are taken toward the interior of the region $S_{1} S_{2}$. Remembering that the integral of Φ over any sphere with center P is zero and since $1 / r-1 / r_{1}$ is zero on S_{1} and constant on S_{2} we have from the above equation

$$
\begin{equation*}
\int_{S_{2}} \frac{\partial \Phi}{\partial n} d s=0 \tag{3}
\end{equation*}
$$

Since S_{2} is any sphere interior to S_{1} it follows that the integral of the normal derivative of Φ over any sphere with center P and radius less than r_{1} vanishes. The same result could of course be obtained from the property $\int_{S} \Phi d s=0$ by considering the continuity of Φ and using the theorem concerning the differentiation of a definite integral. In (3) because of the continuity of the first partial derivatives of Φ in the deleted neighborhood of P we may take the normal derivative either toward the interior or toward the
exterior normal of S_{2} throughout the region of integration. Hence if the function

$$
f=c \frac{1}{r}+\Phi+V
$$

is to be such that the integral of its normal derivative vanishes when taken over spheres in the neighborhood of P, the constant c must be zero. Conversely we have shown by the above argument that if c is zero $\int(\partial f / \partial n) d s$ will vanish when taken over every sphere with center P and of radius $r<r_{1}$. We may now state the following theorem.

Theorem II. Every function which satisfies the conditions of $\S 2$ in a region R is harmonic at every interior point of R except possibly at the points P_{i}. In the neighborhood of each P_{i}, f is of the form $\Phi+V$. If $\Phi \equiv 0$, in the neighborhood of any P_{i}, P_{i} is at most a removable discontinuity. If $\Phi \neq 0$, f will be harmonic in the deleted neighborhood of P and will be such that for certain modes of approach to P it will tend toward plus infinity and for other modes to minus infinity.

It may be remarked in closing that although we have supposed $\int(\partial f / \partial n) d s$ to vanish only when taken over sufficiently small spheres with P_{i} as center it is now easy to prove that it will vanish when taken over any regular surface S in R which does not pass through one of the P_{i}. We need merely to surround each P_{i} in S by a sphere S_{i} lying entirely in S and use the fact that

$$
\begin{equation*}
\int \frac{\partial f}{\partial n} d s=0 \tag{4}
\end{equation*}
$$

where the integral is taken over S and the spheres S_{i}. Then $\int_{s}(\partial f / \partial n) d s$ will vanish since the portion of (4) due to the S_{i} vanishes.

Wesleyan University

[^0]: * Proceedings of the American Academy, vol. 41, pp. 577-583.

