AN ELEMENTARY PROOF BY MATHEMATICAL INDUCTION OF THE EQUIVALENCE OF THE CESÀRO AND HÖLDER SUM FORMULAS*

BY TOMLINSON FORT

For brevity, notation and terminology in this note are generally not explained. It is believed that they will be clear in all instances to any probable reader.

THEOREM. The Hölder and Cesàro methods of summation are equivalent.

PROOF. Let $C_n^{(2)}$ represent the Cesàro sum of order r to n terms:

(1)
$$C_{n}^{(r)} = s_0 \frac{r}{r+n} + \dots + s_k \frac{r(n-k+1)\cdots n}{(r+n-k)\cdots (r+n)} + \dots + s_n \frac{r(n!)}{r\cdots (r+n)}.$$

We readily verify that $C_n^{(r)}$ satisfies the equation

(2)
$$(n + r + 1) C_n^{(r+1)} - n C_{(n-1)}^{(r+1)} = (r + 1) C_n^{(r)},$$

which may be written in the form

$$\Delta\{nC_{(n-1)}^{(r+1)}\} + r C_n^{(r+1)} = (r+1)C_n^{(r)},$$

or

(3)
$$(n+1)C_n^{(r+1)} + r \sum_{n=0}^n C_n^{(r+1)} = (r+1) \sum_{n=0}^n C_n^{(r)}.$$

By solving (2) we get the following, as is easily verified:

$$C_{n}^{(r+1)} = \frac{n!}{(r+2)\cdots(r+n+1)} \sum_{n=0}^{n} \frac{(r+1)\cdots(r+n)}{n!} C_{n}^{(r)}$$

$$\stackrel{(4)}{=} \frac{(r+1)!}{(n+1)\cdots(n+r+1)} \sum_{n=0}^{n} \frac{(n+1)\cdots(n+r)}{r!} C_{n}^{(r)}.$$

*Presented to the Society, December 29, 1926.

Let $H_n^{(r)}$ represent the Hölder sum to *n* terms of order *r*. We establish by mathematical induction the following fundamental formula.

$$H_{n}^{(r)} = k_{0}^{(r)}C_{n}^{(r)} + k_{1}^{(r)}\frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r)}$$

$$(5) \qquad + k_{2}^{(r)}\frac{1}{n+1} \sum_{n=0}^{n} \frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r)} + \cdots$$

$$+ k_{n-1}^{(r)} \frac{1}{n+1} \sum_{n=0}^{n} \cdots \frac{1}{n-1} \sum_{n=0}^{n} C_{n}^{(r)}$$

 $+ k_{r-1}^{(r)} \frac{1}{n+1} \sum_{n=0}^{n} \cdots \frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r)}$

where

$$k_0^{(r)} + k_1^{(r)} + \cdots + k_{r-1}^{(r)} = 1.$$

If we assume (5), we find

$$H_{n}^{(r+1)} = \frac{1}{n+1} \sum_{n=0}^{n} H_{n}^{(r)} = k_{0}^{(r)} \frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r)}$$

$$+ k_{1}^{(r)} \frac{1}{n+1} \sum_{n=0}^{n} \frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r)}$$

$$+ k_{2}^{(r)} \frac{1}{n+1} \sum_{n=0}^{n} \frac{1}{n+1} \sum_{n=0}^{n} \frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r)}$$

$$+ \cdots + k_{r-1}^{(r)} \frac{1}{r+1} \sum_{n=0}^{n} \frac{1}{n+1} \cdots \sum_{n=0}^{n} C_{n}^{(r)}.$$

Substitute for

$$\frac{1}{n+1} \sum_{n=0}^{n} C_n^{(r)}$$

in each sum of (6), its value from (3). Take for example

$$k_{1}^{(r)} \frac{1}{n+1} \sum_{n=0}^{n} \frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r)} = k_{1}^{(r)} \frac{1}{r+1} \cdot \frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r+1)}$$

$$(7) \qquad + k_{1}^{(r)} \frac{r}{n+1} \frac{1}{n+1} \sum_{n=0}^{n} \frac{1}{n+1} \sum_{n=0}^{n} C_{n}^{(r+1)}.$$

We notice that

$$k_1^{(r)} \cdot \frac{1}{r+1} + k_1^{(r)} \frac{r}{r+1} = k_1^{(r)}.$$

We then notice that we have an expression of the same form as (5), but with r replaced by (r+1). As $H_n^{(1)} = C_n^{(1)}$, proof of the formula follows by induction.

We next prove in a similar manner the formula

$$(8) \quad C_n^{(r)} = h_0^{(r)} H_n^{(r)} \\ + h_1^{(r)} \frac{r!}{(n+1)\cdots(n+r)} \sum_{n=0}^n \frac{(n+1)\cdots(n+r-1)}{(r-1)!} H_n^{(r)} \\ + h_2^{(r)} \frac{r!}{(n+1)\cdots(n+r)} \sum_{n=0}^n \sum_{n=0}^n \frac{(n+1)\cdots(n+r-2)}{(r-2)!} H_n^{(r)} \\ + \cdots + h_{r-1}^{(r)} \frac{r!}{(n+1)\cdots(n+r)} \sum_{n=0}^n \cdots \sum_{n=0}^n (n+1) H_n^{(r)},$$

where

$$h_0^{(r)} + h_1^{(r)} + \cdots + h_{r-1} = 1.$$

To prove this formula, substitute in (4), and then make the substitution

$$(9) \qquad \sum_{n=0}^{n} \frac{(n+1)\cdots(n+r-2)}{(r-2)!} H_{n}^{(r)} \\ = \frac{(n+1)\cdots(n+r-1)}{(r-2)!} \frac{1}{n+1} \sum_{n=0}^{n} H_{n}^{(r)} \\ - \sum_{n=0}^{n} \frac{(n+1)\cdots(n+r-2)}{(r-3)!} \cdot \frac{1}{n+1} \sum_{n=0}^{n} H_{n}^{(r)} \\ = (r-1)\frac{(n+1)\cdots(n+r-1)}{(r-1)!} H_{n}^{(r+1)} \\ - (r-2) \sum_{n=0}^{n} \frac{(n+1)\cdots(n+r-2)}{(r-2)!} H_{n}^{(r+1)},$$

and similarly for other sums. To prove (9), etc., sum by parts once, using the formula

$$\sum_{n=0}^{n} u(n)\Delta v(n) = u(n)v(n) \bigg]_{0}^{n+1} - \sum_{n=0}^{n} v(n+1)\Delta u(n).$$

Notice that the coefficients in the last member of (9), namely (r-1) and -(r-2), add to unity, and then by mathematical induction formula (8) is proved.

The conclusions of the theorem are readily drawn from equations (5) and (8). Consider first that $C_n^{(r)} \rightarrow s$. Then by a repetition of the arithmetic mean theorem each sum in (5) approaches s and hence

$$H_n^{(r)} \to (k_0^{(r)} + k_1^{(r)} + \cdots + k_{r-1}^{(r)})s = s.$$

Next suppose that $H_n^{(r)} \rightarrow s$. We do not have a theorem so well known as the arithmetic mean theorem to refer to but, if we notice that when $H_n^{(r)}$ is replaced by a constant *s*, each sum in (8), as

$$\frac{r!}{(n+1)\cdots(n+r)} \sum_{n=0}^{n} \sum_{n=0}^{n} \frac{(n+1)\cdots(n+r-2)}{(r-2)!} s,$$

equals s, a little simple epsilon work gives the desired result that $C_n^{(r)} \rightarrow s$.

Difference equations from which the coefficients $k_i^{(r)}$ and $h_i^{(r)}$ can be calculated might be written down but are omitted as they are not necessary for the proof of the theorem.

HUNTER COLLEGE

304