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Again, generally fiT^f. Under what condition will / i—/'? 
From (2) and (3) we see that the dual of a function is the 
same as the negative of the function if each discriminant is 
the dual-negative of its conjugate» 

Finally, if we have a relation ƒ = 0, then in general / I T ^ I , 

though always ƒ' = 1. What is the condition that ƒ1 = 1 when 
ƒ=()? By means of (2) and (3) we find this condition to be 
the same as the condition that fi—f'. 
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In a number of recent papers, Carsonf has made a definite 
advance in the study of the Heaviside operational calculus 
by showing that the solution of an operational equation 
of the type in question can be obtained from an integral 
equation. Having done this, he was able to discuss Heavi-
side's three principal rules and to derive a number of im­
portant theorems by the use of which it is possible to solve 
by operational methods, problems to which Heaviside's 
rules are not directly applicable. 

Somewhat earlier BromwichJ and Wagner § solved, by the 
use of contour integrals in the complex plane, problems to 
which one of Heaviside's rules is applicable. They noted that 
the corresponding rule of Heaviside, the expansion theorem, 
follows a t once from a calculation of the residues at the 
poles of the integrand in the case of a suitably restricted 

* Presented to the Society, December 31, 1926. 
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operator. In a later paper Bromwich* also obtained from a 
contour integral the asymptotic solution for a particular 
problem. 

It is the purpose of the present paper to show the con­
nection between the methods of Carson and Bromwich 
by showing tha t Bromwich's contour integral is the solution 
of the integral equation set up by Carson. In the opinion 
of the writer the two methods supplement one another in a 
valuable way. To emphasize the importance of the contour 
integral in obtaining Heaviside's rules rigorously and simply, 
the derivation of each of the three principal rules is briefly 
indicated. 

Carson showed that the solution h(t) of the operational 
equationf 

(1) *(0 = - ^ T -

which satisfies the appropriate initial conditions is the solu­
tion of the integral equation 

(2) - ^ T T " f Kt)erp*dt, 
pB(p) Jo 

the real part of p being assumed to be negative. 
Bromwich, on the other hand, attacked the problem direct­

ly without using the operational calculus, by assuming 
the solution of the corresponding differential equation or 
system of differential equations to be expressed by a con­
tour integral in the complex plane. He found that the 
solution h(t) is given in certain cases by the integral} 

1 c ^vt 

(3) h(t) = I dp, 
2ri Jc pH(p) F' 

* Proceedings, Cambridge Philosophical Society, vol. 20 (1920-21), 
pp. 423-427. 

f For notation and details, see Carson, Bell Technical Journal, vol. 4 
(1925), pp. 686-705; this Bulletin, vol. 22 (1926), pp. 43-47. 

t Proceedings of the London Society, (2), vol. 15 (1916), pp. 410-420. 
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or by the integral 

where C in (3) is a closed curve surrounding all the poles 
of the function 

1 

pH(p) 

no one of which has, by hypothesis, a positive real part, 
and where the path of integration in (4) is a straight line 
para1lel to the axis of imaginaries, c being any positive real 
number. The path of integration in (3) results from a 
deformation of the path in (4). 

I t will now be shown that the solution* of the integral 
equation (2) is given by (4). Fourier's theorem can be 
written in the formf 

(5) ƒ(*) = — ; J exydy I e~yzf(z)dz, 
2irl J c—ioo Jo 

where c and the path of integration are chosen as in (4). 
If we write 

J» 00 

er"f(z)dz, 
0 

it follows from (5) that 

(7) 
1 s*e-\-i<x> 

/(*) = — - I g(y)ex"dy. 
Ziri J c—ioo 

Accordingly (7) furnishes the solution} of the integral 
equation (6) provided that g(y) is subject to suitable 
restrictions. These must be such that (6) can be shown to be 
satisfied when f{z) as given by (7) is substituted in it. This 

* See the recent paper by J. D. Tamarkin, Transactions of this Society, 
vol. 28 (1926), p. 417. 

t See, e.g., H. M. MacDonald, Proceedings of the London Society, 
vol. 35 (1902), p. 428. See also B. Riemann, Gesammelte Werke, p. 149. 

t For a proof of the uniqueness of a continuous solution of equation (6), 
see M. Lerch, Acta Mathematica, vol. 27 (1903), pp. 339-351. 
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can be done if g(y) is an analytic function of y at all points 
in the half-plane in which the real part of y is positive and 
if further, writing y=peid, it is true that in this half-plane 

\i(y)\ <—> 
pa 

for a sufficiently large p, N being a sufficiently large fixed 
positive number, and a being a fixed positive number. In 
accordance with (7) the function h(t) defined by equation 
(4) in terms of Bromwich's contour integral is the solution 
of Carson's integral equation (2). 

Heaviside's rules can be derived in a much more direct 
and rigorous manner from the contour integral than from 
the integral equation. Indeed the contour integral appears 
to furnish the key to the whole situation, making it possible 
to determine whether or not in a given case the Heaviside 
rule in question is applicable and to discuss in a satisfactory 
manner the results obtained by applying these rules. If 
it appears in a given case that Heaviside's rules are not 
applicable, the result is to be sought by studying the contour 
integral itself. 

We shall now indicate briefly the derivation of Heaviside's 
three principal rules and give an example in which it can 
be seen from the contour integral why Heaviside's rule does 
not lead to a correct result. 

(a) The Power Series Solution. Assume that the function 
H(p) is such that the path of integration in (4) can be 
deformed into a circle C described about the origin as center, 
and that on C, \/H(p) can be expanded in the convergent 
series 

1 ui Ü2 dn —— = aQ + — + — + • • • + — + • • • . 
H(p) p p2 pn 

Also expand ept in a power series in p. Then 

2wiJc \p p2 pz I 

( 

pH2 pH3 \ 
l + pt + ~ + ~+---)dp. 
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On forming the product of these series term by term, and 
arranging according to negative and positive powers of p, 
we find the Laurent expansion of the integrand in a circular 
ring enclosing the origin as center. The value of the integral 
is 2wi times the coefficient of the term in I/p. Hence we 
have 

a2t
2 ajn 

h{t) = a0 + axt + — + . . . + — H . 
2! ni 

(b) The Expansion Theorem.* Assume that H(p) is a 
rational function which vanishes for n distinct values of p, 
but which does not vanish for p = 0, and that the path of 
integration can be deformed into a circle c described about 
the origin as center and enclosing all the roots of H(p)=0. 
On calculating the residues at the points 0, pi, p2, • • • , pn, 
the poles of the integrand, it is found that 

17(0) U pfl'ip,) 

The same treatment applies when H(p)=0 has multiple 
roots or when p = 0 is a root. By an appropriate deformation 
of the path of integration it is possible to extend the method 
to cases in which H(p) is a transcendental function. 

(c) The Asymptotic Solution. The contour integral lends 
itself equally well to the discussion of the third of Heaviside's 
principal rules, the asymptotic solution, and the one for 
which Carson's treatment was not entirely satisfactory. 
The method given below of obtaining the asymptotic 
solution was developed independently by the writer but 
its essential features were discovered earlier by Bromwichf 
in treating a particular case. 

* The proof outlined here was published almost simultaneously by 
Bromwich and Wagner in 1916. For other interesting derivations of the 
expansion theorem, see Bromwich, Philosophical Magazine, vol. 37 (1919), 
pp. 407-19; and F. D. Murnaghan, this Bulletin, vol, 33 (1927), p. 81. 

t Proceedings, Cambridge Philosophical Society, vol. 20 (1920-21), 
pp. 423-427. 
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Heaviside's rule states that if 1/H(p) can be expanded 
in the form 

1 
(8) — — = a0 + a\p + a2p

2 + • • • + anp
n + • • • 

H(p) 

+ (bo + hip + b2p
2 + • • • + bnp» + • • • )pv> , 

h(i) is obtained by discarding all terms in the first line ex­
cepting a0, by replacing p1'2 in the second line by l/(irt)112 

and pn in this line by dn/dtn. It results that 

/ d d2 \ 1 
(9) *(«)-«.. + ( » . + > I - + V + - . . ) _ _ 

i-/. 
/ ) l / 2 \ 

1 1-3 1 - 3 - 5 
= öo + ~———-( ô — bi h b2 (7r/)1/2\ It (2/)2 (2/)3 / 

Assume that H(p) is such a function that the path of 
integration of (4) can be deformed into the path ANPQB 
(see Fig. 1) enclosing the origin. This can be done in all 

B R Qt E>> A A\ N 
F I G . 1 

cases which I have examined in which the formula can be 
applied and presumably in all such cases. 

If 1/H(p) can be expanded in the form (8), we note that 
the integral of each term of the expression 

1 
—(aip + a2p

2 + • • • + anp
n + • • • )e*>< 

P 
along the path ANPQB is zero, while 

o 
-e*'dp = a0, 

P 

the integral being taken along the same path as before. 
Accordingly, if we pass over, for the moment, all questions 
of convergence and make use of a proper determination 

1 r a0 

2-KÏJ p 
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of p112 by writing p1/2 = — ip1/2 along AN and pll2 = ip112 along 
QB, we find 

*(/) = 00 + — : f ^ - ( i o + V + &2̂ 2 + • • • ) # 

27TZ Ĵ JV ^ ' 

(10) ^J«*Pm 

1 r™ e~pt 

- öo H I (60 — &iP + &2P2 — &3P3 + • • • )-—dp 
7T J o P ' 

Equation (9) follows immediately on integrating term by 
term. 

This analysis, which is purely formal, has led to the 
asymptotic solution and gives an intelligible foundation for 
this rather strange rule of Heaviside's. In certain cases 
the series in (9) is convergent for all positive values of t, 
in other cases it is only asymptotically convergent, and 
in others it is meaningless.* In any case, it is necessary to 
study the integral and the calculation outlined in obtaining 
equations (9) and (10). If the coefficients b0j bu h * • • are 
such that the series (9) is convergent for positive values of 
/, the investigation is usually not difficult. If the series is 
only asymptotically convergent, it will be found in many 
cases that we can proceed in the following manner. If 
possible, write the operator in the form 

1 1 
—:—— = — (öo + dip + a2p

2 + • • • + anp
n) 

pH(p) p 

+ (bo + hp + b2p
2 + • • • + bnp

n + rn+lp^)p^2, 

in which corresponding to a fixed n, 
I r«+i \ <A9 

provided that \p\ <k, A being a fixed positive number. Let 
the points corresponding to p = — k be denoted by M and R 
in Fig. 1. I t can usually be shown that t can be chosen so 
large that the integrals of evt/(pH(p)) from — 00 to M and 

* Carson, Bell Technical Journal, vol. 4 (1925), pp. 744 and 749. 
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from R to — oo, are arbitrarily small in absolute value. 
Also t can be chosen so large that the integrals from M 
to N and from Q to R of rn+i pn+112 ept is arbitrarily small. 
Then for a sufficiently large t, the absolute value of the 
difference between h(t) and 

i f * i e~pt 

ao + — I [fto — bip + b2p
2 - • • • + bn{ - p)n\ -—dp 

IT J o P 1 ' 

is an arbitrarily small positive number. After this, the limit 
k can be replaced by oo for a sufficiently large t. Then h(t) 
is given approximately by 

1 r h 1-3 1-3-5 

(TT/V^L It ill)2 (2/)3 
(TT/)1/2L It (2/)2 (2/)3 

1-3-5 • • • ( 2 w - I)"! 

(20n J 

The importance of the contour integral in determining 
the applicability of Heaviside's rules is illustrated in the 
following example. Carson* showed that the application 
of the method of the asymptotic solution to the operational 
equation 

hit) = 
p2 + co2 

led to an incorrect result. The reason that it does so is readily 
seen from a consideration of the contour integral 

A(0 = —- I — e*'dp. 
2-Kl Jc-ioo P2 + W2 

The path of integration cannot be deformed into the path 
of Fig. 1, because of the presence of singularities of the 
integrand at the points p= ±iœ. I t is accordingly not to 
be expected that the asymptotic solution can be employed. 

T H E UNIVERSITY OF WISCONSIN 

* Bell Technical Journal, vol. 4 (1925), p . 749. 


