GENERALIZATION OF THE BELTRAMI EQUATIONS TO CURVED n-SPACE*

BY G. E. RAYNOR

Let S be a curved n-space in which the linear element is given by the equation

(1)
$$ds^2 = \sum E_{ij} dx_i dx_j, \qquad (i,j=1,2,\dots,n).$$

Without loss of generality, we may suppose

$$(2) E_{ij} = E_{ji}.$$

Also let $U^{(i)}$, $(i=1, 2, \dots, n)$, be a set of n independent functions of x_1, x_2, \dots, x_n .

We shall say that the $U^{(i)}$ are isothermal in S provided they satisfy the relation

(3)
$$\sum (dU^{(i)})^2 = \lambda \sum E_{ij} dx_i dx_j,$$

where λ is a function of the x_i only.

If in (3) we express the $dU^{(i)}$ in terms of the differentials of x_1, x_2, \dots, x_n it follows from the independence of these differentials that the coefficients of corresponding terms on the two sides of the equation are equal and we obtain the n(n+1)/2 equations

(4)
$$\sum_{k=1}^{n} U_{xi}^{(k)} U_{xj}^{(k)} = \lambda E_{ij}.$$

Let D be the discriminant of the quadratic differential form in (1) and suppose it to be written as a determinant

$$|E_{ij}|,$$

in which E_{ij} is the element in the *i*th row and *j*th column. If each element of (4) be multiplied by λ and if for λE_{ij} be substituted its equal given by the left side of (4), we

^{*} Presented to the Society, September 9, 1926.

readily see that the resulting determinant is the square of the Jacobian

$$J=\frac{\partial(U^{(1)},U^{(2)},\cdots,U^{(n)})}{\partial(x_1,x_2,\cdots,x_n)}.$$

Hence we have

(6)
$$J = \lambda^{n/2} D^{1/2}.$$

In all that follows we shall suppose J to be written as a determinant in which $U_{x_j}^{(i)}$, the derivative of $U^{(i)}$ with respect to x_j , is the element of J in the ith row and jth column.

Multiply both sides of (6) by $U_{x_j}^{(i)}$, on the left letting the factor go into the *i*th row of *J*. Now if we multiply each row of *J*, other than the *i*th, by its *j*th element and add the corresponding products to the elements in the *i*th row, (6) becomes by means of (2) and (4)

(7)
$$\lambda J_{ij} = \lambda^{n/2} D^{1/2} U_{xj}^{(i)},$$

where J_{ij} is the determinant obtained from J by replacing its *i*th row by the *j*th row of D. From (6) and (7) we obtain

(8)
$$U_{x_j}^{(i)} = \frac{J_{ij}}{J^{(n-2)/n}D^{1/n}}, \qquad (i,j=1,2,\cdots,n).$$

This last set of n^2 equations are of the form obtained, by a different method, by Hedrick and Ingold* for curved 3-space. Their equation in our notation may be written

$$(9) U_{x_i}^{(i)} = PJ_{ij}$$

where P is an unspecified factor of proportionality. However, it may be seen as follows that equations (9) are equivalent to (8). Replace each element of J by its expression given by (9) and we obtain

$$(10) J = P^n |J_{ij}|.$$

^{*} Transactions of this Society, vol. 27 (1925), p. 561.

Now each element J_{ij} of the determinant $|J_{ij}|$ is a determinant which has one row of D in it. If we expand this determinant by cofactors with respect to the elements of this row we find that $|J_{ij}|$ breaks up into the product

$$DA_{T}$$

where A_J is the adjoint of J. Hence (10) becomes

$$J = P^n D J^{n-1}.$$

and

$$P = \frac{1}{I^{(n-2)/n}D^{1/n}} \cdot$$

If n = 2, equations (8) become

(11)
$$U_{x_j}^{(i)} = \frac{J_{ij}}{D^{1/2}}, \qquad (i,j=1,2),$$

which are precisely the well known Beltrami equations of differential geometry. These equations have the property that the derivatives of either one of the $U^{(i)}$ are expressed in terms of the E_{ij} and the derivatives of the other U only. This is not the case for n>3 in (8), since J on the right contains $U_{x_j}^{(i)}$ which appears on the left. To obtain a more desirable form we proceed as follows.

From the sub-set of the equations in (8) obtained by keeping i fixed, we get by taking ratios,

(12)
$$U_{x_k}^{(i)} = \frac{J_{ik}}{J_{ii}} U_{x_i}^{(i)}, \qquad (k \neq j).$$

After substituting these expressions for $U_{x_k}^{(i)}$ in the *i*th row of J on the right side of (8), $U_{x_i}^{(i)}$ can be removed as a factor from this row and solving the resulting equation for $U_{x_i}^{(i)}$ we obtain

(13)
$$U_{x_j}^{(i)} = \frac{J_{ij}}{M_i^{(n-2)/(2n-2)}D^{1/(2n-2)}},$$

where by M_i we mean the determinant obtained from J by replacing its ith row by the ith row of the determinant $|J_{ij}|$.

Equations (13) contain none of the derivatives of $U^{(i)}$ on the right and hence we have all the partial derivatives of $U^{(i)}$ expressed in terms of the E_{ij} and $U_{x_j}^{(k)}$, $(k \neq i)$. Hence (13) is the desired generalization of the Beltrami equations to curved n-space.

It can readily be shown, conversely, that if a set of functions satisfy (8) or (13) they also satisfy (3).*

We now proceed to find the differential equation satisfied by each of the $U^{(i)}$ singly. Let C_{ij} denote the cofactor of the element in the *i*th row and *j*th column of J. Then in (8), if we expand the J_{ij} by cofactors with respect to the row of E's contained in them, (8) can be written

(14)
$$\sum_{j=1}^{n} E_{kj} C_{ij} = J^{(n-2)/n} D^{1/n} U_{xk}^{(i)},$$

$$(i, k = 1, 2, \dots, n).$$

If out of the above set of n^2 equations we solve the set of n, obtained by holding i fixed, for the C_{ij} we get

(15)
$$C_{ij} = \frac{N_{ij}J^{(n-2)/n}}{D^{(n-1)/n}},$$

where N_{ij} is the determinant obtained from D by substituting the *i*th row of J for the *j*th row of D. If now J in the last equation be expanded with respect to cofactors of the *i*th row, (15) becomes

(16)
$$C_{ij} = \frac{N_{ij} \left\{ \sum_{k=1}^{n} U_{xk}^{(i)} C_{ik} \right\}^{(n-2)/n}}{D^{(n-1)/n}}, \quad (j = 1, 2, \dots, n).$$

From (16) we get, by taking ratios,

(17)
$$C_{ik} = \frac{N_{ik}}{N_{ij}} C_{ij}, \qquad (k \neq j).$$

Substituting these values for C_{ik} , in the right of (16), and, solving the resulting equation for C_{ij} , we have

^{*} See Hedrick and Ingold, loc. cit., p. 562.

(18)
$$C_{ij} = \frac{N_{ij} \left\{ \sum_{k=1}^{n} U_{x_k}^{(i)} N_{ik} \right\}^{(n-2)/2}}{D^{(n-1)/2}}.$$

Now by a well known property of Jacobians,*

(19)
$$\sum_{i=1}^{n} \frac{\partial C_{ij}}{\partial x_i} = 0.$$

Hence, if in (19) the expressions on the right of (18) be substituted for C_{ij} , we will have the differential equation satisfied by $U^{(i)}$ alone. It is readily seen that the form of this equation is independent of the index (i) and hence the n functions

$$U^{(1)}, U^{(2)}, \cdots, U^{(n)}$$

satisfy the same differential equation, which may be looked upon as a generalization of Laplace's equation to curved *n*-space.

WESLEYAN UNIVERSITY

THE NON-EXISTENCE OF A CERTAIN TYPE OF REGULAR POINT SET†

BY R. L. WILDER

In a paper not yet published,‡ I have shown that a regular § connected point set which consists of more than one point and remains connected upon the omission of any connected subset, is a simple closed (Jordan) curve. As a simple closed curve is a bounded point set, it is clear that there does not exist any unbounded regular connected point set which remains connected upon the omission of any connected subset.

^{*} Muir, Theory of Determinants, vol. 2, p. 230.

[†] Presented to the Society, December 29, 1926.

[‡] See, however, this Bulletin, vol. 32 (1926), p. 591, paper No. 35.

[§] That is, connected im kleinen.