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THREE-PARAMETER AND FOUR-PARAMETER
LINEAR FAMILIES OF CONICS IN THE
GALOIS FIELDS OF ORDER 27*

BY A. D. CAMPBELL

1. Three-Parameter Families. We shall denote a Galois
field of order 2" by the symbol GF(2"). We define a three-
parameter linear family of conics in such a GF(2") as the
locus of all points whose coordinates x, y, z satisfy an equation
of the form

(1) ACi 4 pCe + vCs + pCy = 0,
where

Ci = aix? 4+ biy? + ¢z + fiyz + gizx + hixy = 0,
(i=1,2,3,4),

and where the variables, coefficients,and parameters represent
numbers in this domain. The conics C;=0, - - -, C4=0 are
linearly independent, and are called fundamental conics of
this family. In this paper we derive the classes of these
families, and we give a typical family for each class. We
note that in any GF(2") every number is a perfect square
with just one square root,and (ax+By+7v2)? =a®+F%? +v%%
We note that every such family has at least one double line.

We first divide these families into the following distinct sets.

Set I. Each family contains a net of conics reducible to the
form

(2) Ax? + py? 4 v32 = 0.

Set II. Each family contains no net reducible to (2), but
does contain a net reducible to the form

(3) Ax? + py? 4 2vxy = 0.

* Presented to the Society, December 29, 1923.
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Set I11. Each family contains at least two double lines,
but no net reducible to (2) or (3).

Set IV. Each family contains only one double line, but
has also a net reducible to the form

4) Ax? + pxy + vaz = 0.

Set V. Each family has none of the preceding properties,
but has a pencil reducible to the form
(5) N2 + pxy = 0.

Set VI. Each family has just one double line, but none of
the preceding degenerate pencils and nets.

Set I. Such a family can be put in the form

Ax? 4 py? 4 v22 4 o(fyz + gzx + kxy) = 0.

We easily get
(6) Class (1) : A2 4+ py? + w32 4 pxy = 0.

Set II. We obtain
@) Class (2) : Ae? 4+ uy? + vay + p(z2 4+ zx) = 0.
(8) Class (3) : Ax? 4+ py? + vxy + pzx = 0.

Any transformation
9) 2= + By + vig', y= ' + B2y + 77,

z = azx’ + B3y’ + va?',

where ’al, Bz, vs | #0, that is to send (7) into (8) must have
Y1=72=0, 4350, since the net p=0 of one family must go
into that of the other. But (9) then cannot send (7) into a
family lacking the term in 2.

Set III. We can reduce such a family to the form
Ax? + py? + vaz + p(cz? + fyz + haxy) = 0.

We get the following three classes,according as ¢f#0 ; or ¢ =0,
f#0;0rc#0, f=0.
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(10) Class (4) : Na? + uy? + vzx + p(s% + yz) = 0.
(11) Class (5) : Ax? + py? + vax + pyz = 0.

An argument similar to that used in the study of (7) and (8)
shows that (10) and (11) are non-equivalent. Here the pencil
v=p=0 of (10) must go into the similar pencil of (11) by any
p ojectivity (9).

(12)  Class (6) : Ax? 4+ py? 4 vzx + p(22 4 xy) = 0.
.t i¢ casy to piove (12) non-eguivalent to (10) o: (11).
StV Weptt (1) in tie forn.
A2 4+ pxy + vaz 4+ p(by? 4 c2? 4+ fyz) = 0.

Vie get two classes, acco.ding as Cy=0 in tl e akove fan:ily is
a pai. of 1eal o1 conjugate imaginaiy lines.

(13) Class (7) : A% 4 pxy + vaz + pyz = 0.

(14) Class (8) : Ax?2 4+ uxy + vaz + p(y2 + 22 + ayz) =0,
wle.e C;=01isiiteducible. Any tiansformation (9) that is to
send (14) into (13) must bave 81 =v:=0. But then the conic
C.s=0 of (14) goes into a conic y'2(8# +B# +aBBs) +2'2(v#
+v9¢ +ayrys)+ - - - =0. So we must have 82 487 +aB:8:=0,
v +v# +avyrys=0 wtlich give us B:=B:=7,=v3;=0 and (9)
is singular.

Set V. We can put the family in one of the three following
forms:

(A) Ax? + pay + v(22 + zx) + p(by® + fyz + gzx) = 0,

(B) Ae?2 + pxy + vyz 4+ p(by? + ¢z + gzx) = 0,

© N2 + pxy + v(z2 + yz) + p(by? + ¢z + gzx)= 0.
Case (A) gives us two classes.

(15)  Class (9) : M2 + pxy + »(22 + zx) + p(y% + 33) = 0.

(76) Class (10) : Ax? + pxy + »(22 + 3x) + pyz = 0.

Any projectivity (9) that is to send (15) into (16) must have
Bi=v1=72=0, Brys#0. But then C;=0 and Cy;=0 of (10)
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must go separately into conics lacking the term in y2 This
gives us 32 =0, 82 +8:8;=0 ; hence 3, =0.

Case (B) gives us two classes.
(17)  Class (11) : N\a? + pxy + »yz + p(y% + 2% + 3%) = 0.
(18) Class (12) : Na? + uxy + vyz + p(y? + 2x) = 0.
The families (17) and (18) are easily proved to be non-
equivalent. They are non-equivalent to families (15) and
(16) because of the presence in these two latter families of
the degenerate pencil Ax2+4»(22+2x) =0.

Case (C) gives us the following class.

(19) Class (13) : N+ puxy+v(22+ y2) + (v + az?+2x) =0.

Set VI. We can put the family in one of two forms
(A) Ne? + u(y? + xy) + vyz + p(by? + cz* + gzx) = 0,
(B) A2 4 puyz 4 v(by? 4 cz? + gax)
+ p(8'y? + 'z + K'xy) = 0.
Case (A) gives us
(20) Class (14) :
Mt + u(y? 4 xy) +vyz + p(y2 + a2 +220) =0, a5 0.
Case (B) gives us
(21) Class (15) :
Nt + uyz + v(y? + az® + zx) + p(By? + v22 + xy) = 0,

where y=1 or v cube, v/B7«a. The family (20) has a

degenerate pencil Ax2+u(y?+xy) =0, which does not occur
in (21).

2. Four-Parameler Families. We define a four-parameter
linear family of conics in a GF(2") by the equation

(22) M1+ uCs + vC3 + pCy + 0Cs = 0,

where the details of notation are as indicated in the descrip-
tion of equation (1). It is easy to show that every such
family has at least two double lines. First we assume that
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(22) has a degenerate net reducible to (2). Then we assume
that (22) has no net (2), but a net (3). Then we assume that
(22) has neither (2) nor (3).
If (22) has a net (2) we can put the family in the form
A2 4+ uy? + vz2 4 pxy + o(fyz + gzx) = 0,
which gives us
(23) Class (1) :  Ax2 4 py? 4+ v32 + pxy + oaz = 0.
If (22) has a net (3), but not a net (2), we get
N + py? + vxy + paz + o(cz? + fyz) = 0,
which gives us, according as ¢#0, or ¢ =0,
(24) Class (2) : Nx*+ py?+vay + pxz + o(22+ y3) =0,
(25) Class (3) : Nx? + py? + vxy + pxz + oyz = 0.
If (9) is to send (24) into (25) we must have y;=%,=0,
v3#%0. But such a transformation cannot send (24) into a

family lacking the term in 22.

If (22) has no net (2) and no net (3) we easily reduce the
family to the form

(26) Class (4) :  Nx?+ py2 4+ vaz + pyz + o(z2 + xy) = 0.
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