A FURTHER NOTE ON THE CONVERSE OF FERMAT'S THEOREM

BY D. H. LEHMER

In a previous paper* the writer had discussed the converse of Fermat's theorem as a means of establishing the primality or non-primality of a large integer. Use was made chiefly of the following theorem:

Theorem 3. If $a^{x} \equiv 1(\bmod N)$ for $x=N-1$ and if $a^{x} \equiv r \not \equiv 1$ for $x=(N-1) / p$ and if $r-1$ is prime to N, then all the factors of N belong to the form $n p^{\alpha}+1$ where α is the highest power of the prime p contained in $N-1$.

It is the purpose of this note to give a more general theorem in which the third part of the hypothesis of Theorem 3 is removed.

Theorem 4. If $a^{x} \equiv 1(\bmod N)$ for $x=N-1$ and $a^{x} \equiv r \neq 1$ for $x=(N-1) / p$, then all the factors of N / δ are of the form $n p^{\alpha}+1$, where α is the highest power of the prime p contained in $N-1$ and where δ is the G.C.D. of $r-1$ and N.

Let k be a prime factor of N / δ and let ω be the exponent to which a belongs modulo k. Then ω divides $N-1$ and $k-1$ but not $m=(N-1) / p$; for if ω divided m we would have $a^{m} \equiv 1(\bmod k)$ so that $r-1$ would divide by k. But this is impossible, since k divides N / δ which is prime to $r-1$. From here on, the proof is the same as in Theorem 3 with the result that $k=n p^{\alpha}+1$.

Ordinarily, we have $\delta=1$ so that the two theorems become identical. An example in which this is not the case is the following: Let $N=16,046,641 . \quad N-1=2^{4} \times 3^{3} \times 5 \times 17 \times 19$ $\times 23$. It will be found that

[^0]\[

$$
\begin{aligned}
2^{N-1} & \equiv 1(\bmod N) \\
2^{(N-1) / 19} & =8708025=r .
\end{aligned}
$$
\]

If we take the G.C.D. of $r-1$ and N, we get $\delta=35113$, so that $N / \delta=457$ and we are able to say that the factors of 457 are of the form $19 n+1$. The factors of δ may be obtained by applying Theorem 4 in which a new value of m is chosen. The modulus may be taken as δ.

Theorem 4 has been applied to the number

$$
N=\left(2^{61}+1\right) / 3=768614336404564651
$$

This number has been listed as a prime but the writer could not find any account of its investigation.*

The factorization of $N-1$ is

$$
\begin{aligned}
N-1=2\left(2^{60}-1\right) / 3= & 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 31 \cdot 41 \cdot 61 \\
& \cdot 151 \cdot 331 \cdot 1321
\end{aligned}
$$

It was found that

$$
\begin{aligned}
3^{(N-1) / 5} & \equiv 754529885435533861=r_{1} \\
3^{(N-1) / 3} & \equiv 243065045915817725=r_{2} \\
3^{N-1} & \equiv 1
\end{aligned} \quad(\bmod N) . \quad . \quad \text {. }
$$

It happens that $r_{1}-1$ and $r_{2}-1$ are both prime to N. Hence the factors of N belong to the forms

$$
\left.\begin{array}{r}
3 n+1 \\
25 n+1 \\
61 n+1
\end{array}\right\} 4575 n+1
$$

By making use of the fact that N has no factor $<300,000$ and by seeking to represent N as the difference of two squares it was easily shown to be a prime.

Two more numbers dividing $10^{n} \pm 1$ have also been tested recently. The first of these is $\left(10^{37}-1\right) / 9$ or

$$
N=1,111,111,111,111,111,111,111,111,111,111,111,111
$$

[^1]It was found that
$7^{N-1} \equiv 618,117,398,624,349,204,361,513,620,865,505,749$
$(\bmod N)$.
Hence N is composite. This number furnishes another example of the scarcity of primes of this form. The next such number which has any chance of primality consists of 47 of the digits 1 .

The second number tested is $\left(10^{41}+1\right) / 11$ or

$$
\begin{aligned}
& N= \\
& 9,090,909,090,909,090,909,090,909,090,909,090,909,091 .
\end{aligned}
$$

In this case it was found that

$$
\begin{aligned}
& 3^{N-1} \equiv \\
& 763,287,007,500,473,474,161,903,784,495,157,879,509 \\
& \\
& \\
& (\bmod N)
\end{aligned}
$$

It follows, then, that N is also composite. This result represents the sixth attempt and failure to discover a larger prime than $2^{127}-1$ found by Lucas in 1877.

The University of California

ON THE APPROXIMATE REPRESENTATION OF ANALYTIC FUNCTIONS*

BY DUNHAM JACKSON

The purpose of this paper is to discuss the convergence of approximating polynomials determined by a least-square criterion, together with certain auxiliary conditions. Let $f(x)$ be a given function over the interval $a \leqq x \leqq b$. For each positive integral value of n, let p_{n} be a positive integer $\leqq n$. A polynomial of the nth degree may be required, for example, to coincide in value with $f(x)$ at p_{n} specified points of the interval; and among the infinitely many polynomials of the

[^2]
[^0]: * This Bulletin, vol. 33 (1927), pp. 327-340.

[^1]: * Cunningham and Woodall, Factorisation of $y^{n} \pm 1$, London, 1925, p. 1.

[^2]: * Presented to the Society, September 8, 1927.

