polar is degenerate; for p=3, n=3+1, $\epsilon=1$, we find again the 2d polar is degenerate.

If $n = \alpha p^m + \beta p^{m-1} + \cdots + \gamma p^2 + \delta p$, i.e. $\epsilon = 0$ in *n*, then all the polars of (1, 0, 0) pass through (1, 0, 0) whether or not this point lies on f(x, y, z) = 0.

If n < p we find no peculiarities like the above.

SYRACUSE UNIVERSITY

THE CHARACTERISTIC EQUATION OF A MATRIX*

BY E. T. BROWNE

1. Introduction. Consider any square matrix A, real or complex, of order n. If I is the unit matrix, $A - \lambda I$ is called the characteristic matrix of A; the determinant of the characteristic matrix is called the characteristic determinant of A; the equation obtained by equating this determinant to zero is called the *characteristic equation* of A; and the roots of this equation are called the characteristic roots of A. If A happens to be a matrix of a particular type certain definite statements may be made as to the nature of its characteristic roots. For example, if A is Hermitian its characteristic roots are all real; if A is real and skewsymmetric, its characteristic roots are all pure imaginary or zero; if A is a real orthogonal matrix, its characteristic roots are of modulus unity. However, if A is not a matrix of some special type, no general statement can be made as to the nature of its characteristic roots. In 1900 Bendixson[†] proved that if $\alpha + i\beta$ is a characteristic root of a real matrix A, and if $\rho_1 \ge \rho_2 \ge \cdots \ge \rho_n$ are the characteristic roots (all real) of the symmetric matrix $\frac{1}{2}(A + A')$, then $\rho_1 \ge \alpha \ge \rho_n$. The extension to the case where the elements of A are com-

1928.]

^{*} Presented to the Society, December 28, 1927.

[†] Bendixson, Sur les racines d'une équation fondamentale, Acta Mathematica, vol. 25 (1902), pp. 359-365.

plex was made by Hirsch^{*} in 1902. In 1904 Bromwich[†] further extended the theorem as follows: If $\alpha + i\beta$ is a characteristic root of a matrix A whose elements are real or complex, and if $\rho_1, \rho_2, \dots, \rho_n$ are the characteristic roots (all real) of $\frac{1}{2}(A + \overline{A}')$ and $i\mu_1, \dots, i\mu_n$ are the characteristic roots of $\frac{1}{2}(A - \overline{A}')$, then α lies between the greatest and the least of ρ_1, \dots, ρ_n , and $|\beta|$ does not exceed the greatest of $|\mu_1|, \dots, |\mu_n|$.

In some cases the theorems just cited give very good limits for the characteristic roots of a matrix, while in other cases the limits are not so restricted. Thus in the case of a real orthogonal matrix these theorems may merely state that the characteristic roots lie in the square $x = \pm 1$, $y = \pm 1$. In this paper we shall give a criterion which in some cases, notably in the case of a real orthogonal matrix, give more restricted limits than the theorems above.

2. Reduction of a Matrix to a Semi-Unitary Form. Let A be any square matrix of order n. Then $A\overline{A}'$ is Hermitian and there exists a unitary matrix κ (that is, $\kappa \overline{\kappa}' = I$) such that

$$\kappa A \overline{A}' \overline{\kappa}' = M,$$

where M^{\ddagger} is zero except in the diagonal, and the elements in the diagonal are the (real) characteristic roots $\rho_1, \rho_2, \dots, \rho_n$ of $A\overline{A'}$. We may write

(1)
$$M = \kappa A \overline{\kappa}' \kappa \overline{A}' \overline{\kappa}' = B \overline{B}',$$

where

(2)
$$B = \kappa A \bar{\kappa}'.$$

From (1) the elements b_{ij} of B evidently satisfy the conditions

(3)
$$\sum_{i}^{1,\dots,n} b_{ii}\overline{b}_{ji} = \rho_i\delta_{ij}, \quad (i, j = 1, \dots, n),$$

^{*} Hirsch, Acta Mathematica, vol. 25 (1902), p. 367.

[†] Bromwich, On the roots of the characteristic equation of a linear substitution, Acta Mathematica, vol. 30 (1906), pp. 295-304.

[‡] Hilton, Homogeneous Linear Substitutions, Oxford, 1914, p. 41.

where δ_{ij} is the Kronecker symbol, and equals 1 if i=j; 0 if $i\neq j$. In view of the conditions (3) we shall say that *B* is in a *semi-unitary* (*semi-orthogonal*, if *B* is *real*) form. If $\rho_i = 1$, $(i = 1, \dots, n)$, *B* is unitary. We may then state the following theorem.

THEOREM I. If A is any square matrix of order n there exists a unitary matrix κ such that $\kappa A \overline{\kappa}' = B$, where B is in a semi-unitary form.

If M is of rank r, κ may be so chosen that $\rho_i > 0$, $(i=1,\dots,r); \rho_i=0, (i=r+1,\dots,n)$. Since $\rho_i = \sum_t b_{it} \bar{b}_{it} = 0$, $(i=r+1,\dots,n)$, evidently $b_{it}=0$, $(i=r+1,\dots,n; t=1,\dots,n)$; that is, the last n-r rows of B consist entirely of zeros, so that B is of rank at most r. Hence, B must be of rank exactly r. Since the rank of A equals the rank of B, and the rank of $A\overline{A'}$ equals the rank of M, incidentally we have given a proof of the following well known theorem.

THEOREM. If A is any square matrix of order n, the ranks of A and $A\overline{A}'$ are the same.*

3. The Characteristic Roots of $A\overline{A'}$. Referring to the matrix B defined as in (1) and (2), let us form a non-singular matrix $C = (c_{ij})$ by replacing the zeros in the last n-r rows of B by elements $(x_{s1}, x_{s2}, \dots, x_{sn}) \neq (0, 0, \dots, 0)$, such that

(4)
$$\sum_{t}^{1,\ldots,n} b_{it}\bar{x}_{st} = 0, \quad (i = 1, \cdots, r; s = 1, \cdots, n-r),$$

and, moreover, such that

$$\sum_{t=1}^{1,\dots,n} x_{it} \bar{x}_{jt} = 0, \qquad (i, j = 1, \dots, n-r; i \neq j).$$

Thus, we may find $(\bar{x}_{11}, \bar{x}_{12}, \dots, \bar{x}_{1n})$ by determining a nonzero solution of the n-r linear homogeneous equations (4). Having obtained (x_{11}, \dots, x_{1n}) we may proceed to find

1928.]

^{*} Hilton, Homogeneous Linear Substitutions, Exercise 4, p. 51.

 $(\bar{x}_{21}, \bar{x}_{22}, \dots, \bar{x}_{2n})$ by adjoining to the system (4) the additional linear homogeneous equation

$$\sum_{t}^{1,\dots,n} x_{1t} \bar{x}_{2t} = 0 ;$$

and so on. If $\sum_{t}^{1,\dots,n} c_{it} \bar{c}_{it} = \rho_i$, $(i = 1,\dots,n)$, then $\rho_i > 0$ and if we write

$$\chi_{ij} = \frac{c_{ij}}{(\rho_i)^{1/2}}, \quad (i, j = 1, \cdots, n),$$

the matrix χ thus obtained is a unitary matrix. It is evident from the manner in which χ was built up that $B\bar{\chi}'$ is zero except in the diagonal. The elements in the last n-r places in the diagonal are also zero, while those in the first places are $(\rho_i)^{1/2}$, the square roots of the characteristic roots of $A\bar{A}'$. Since $B\bar{\chi}'$ is real and symmetric, the characteristic roots of

$$N = \chi \overline{B}' B \overline{\chi}' = (B \overline{\chi}')^2$$

are the squares of the characteristic roots of $B\bar{\chi}'$, and are therefore the characteristic roots of $A\bar{A}'$. But

$$N = \chi \overline{B}' B \overline{\chi}' = \chi \kappa \overline{A}' \overline{\kappa}' \kappa A \overline{\kappa}' \overline{\chi}' = \chi \kappa \overline{A}' A \overline{\kappa}' \overline{\chi}' = \psi \overline{A}' A \overline{\psi}',$$

where ψ is the unitary matrix $\chi \kappa$. Thus it follows* that the characteristic roots of $\overline{A}'A$ are the same as those of N and therefore of $A\overline{A}'$. Hence we have the following theorem.

THEOREM II. If A is any square matrix of order n the characteristic roots of $A\overline{A}'$ are the same as the characteristic roots of $\overline{A}'A$.

Since the unitary matrices κ , χ above are such that

$$\kappa A \bar{\kappa}' = B$$
, and $B \bar{\chi}' = \chi \overline{B}'$,

it follows at once that

$$\kappa A \bar{\kappa}' \bar{\chi}' = B \bar{\chi}' = \chi \bar{B}' = \chi \kappa \bar{A}' \bar{\kappa}'.$$

Hence

366

^{*} Hilton, Homogeneous Linear Substitutions, p. 20.

$$\bar{\kappa}'\bar{\chi}'\kappa A\bar{\kappa}'\bar{\chi}'\kappa = \overline{A}'.$$

Writing $\bar{\kappa}'\bar{\chi}'\kappa = \phi$, we have the following theorem.

THEOREM III. If A is any square matrix of order n there exists a unitary matrix ϕ such that

(5)
$$\phi A \phi = \overline{A}'.$$

In this connection compare Hilton, Homogeneous Linear Substitutions, Ex. 6, p. 124.

Since from (5)

$$A\phi = \overline{\phi}'\overline{A}' = (\overline{A\phi})',$$

 $A\phi$ is Hermitian, so that we have the following theorem.

THEOREM IV. If A is any square matrix of order n, there exists a unitary matrix ϕ such that $A\phi$ is Hermitian.

4. The Characteristic Roots of A. From (2) the characteristic roots of A are evidently the same as the characteristic roots of B. Suppose then that λ is a characteristic root of B so that there exists a set $(x_1, x_2, \dots, x_n) \neq (0, 0, \dots, 0)$ such that

(6)
$$\sum_{t=1}^{1,\dots,n} b_{ti}x_t = \lambda x_i, \qquad (i = 1, \dots, n).$$

Taking the conjugates of both members of each of these equations, we have

(7)
$$\sum_{s}^{1,\dots,n} \bar{b}_{si} \bar{x}_{s} = \bar{\lambda} \bar{x}_{i}, \qquad (i = 1, \dots, n).$$

Multiplying corresponding equations in (6) and (7), member for member, and summing as to i, we find

$$\sum_{s,t}^{1,\dots,n} \left[\sum_{i}^{1,\dots,n} b_{ti} \bar{b}_{si} \right] x_t \bar{x}_s = \lambda \bar{\lambda} \sum_{i}^{1,\dots,n} x_i \bar{x}_i ;$$
$$\sum_{i}^{1,\dots,n} \rho_i x_i \bar{x}_i = \lambda \bar{\lambda} \sum_{i}^{1,\dots,n} x_i \bar{x}_i.$$

that is

1928.]

Let G be the largest and s the smallest of the characteristic roots of $A\overline{A}'$. Then

$$\lambda \overline{\lambda} \sum x_i \overline{x}_i \leq G \sum x_i \overline{x}_i,$$

so that $\lambda \overline{\lambda} \leq G$. Similarly, $\lambda \overline{\lambda} \geq s$; i. e.,

$$s \leq \lambda \lambda \leq G$$
.

In particular, if A is unitary so that $A\overline{A}' = I$, then G = s = 1, so that $1 \leq \lambda \overline{\lambda} \leq 1$; i.e., $\lambda \overline{\lambda} = 1$, as is well known. Hence we have the following theorem.

THEOREM V. If λ is a characteristic root of a square matrix A and if G and s are respectively the largest and the smallest characteristic roots of $A\overline{A'}$, then

$$s \leq \lambda \overline{\lambda} \leq G.$$

The University of North Carolina