polar is degenerate; for $p=3, n=3+1, \epsilon=1$, we find again the 2 d polar is degenerate.

If $n=\alpha p^{m}+\beta p^{m-1}+\cdots+\gamma p^{2}+\delta p$, i.e. $\epsilon=0$ in n, then all the polars of $(1,0,0)$ pass through ($1,0,0$) whether or not this point lies on $f(x, y, z)=0$.

If $n<p$ we find no peculiarities like the above.
Syracuse University

THE CHARACTERISTIC EQUATION OF A MATRIX*

BY E. T. BROWNE

1. Introduction. Consider any square matrix A, real or complex, of order n. If I is the unit matrix, $A-\lambda I$ is called the characteristic matrix of A; the determinant of the characteristic matrix is called the characteristic determinant of A; the equation obtained by equating this determinant to zero is called the characteristic equation of A; and the roots of this equation are called the characteristic roots of A. If A happens to be a matrix of a particular type certain definite statements may be made as to the nature of its characteristic roots. For example, if A is Hermitian its characteristic roots are all real; if A is real and skewsymmetric, its characteristic roots are all pure imaginary or zero; if A is a real orthogonal matrix, its characteristic roots are of modulus unity. However, if A is not a matrix of some special type, no general statement can be made as to the nature of its characteristic roots. In 1900 Bendixson \dagger proved that if $\alpha+i \beta$ is a characteristic root of a real matrix A, and if $\rho_{1} \geqq \rho_{2} \geqq \cdots \geqq \rho_{n}$ are the characteristic roots (all real) of the symmetric matrix $\frac{1}{2}\left(A+A^{\prime}\right)$, then $\rho_{1} \geqq \alpha \geqq \rho_{n}$. The extension to the case where the elements of A are com-

[^0]plex was made by Hirsch* in 1902. In 1904 Bromwich \dagger further extended the theorem as follows: If $\alpha+i \beta$ is a characteristic root of a matrix A whose elements are real or complex, and if $\rho_{1}, \rho_{2}, \cdots, \rho_{n}$ are the characteristic roots (all real) of $\frac{1}{2}\left(A+\bar{A}^{\prime}\right)$ and $i \mu_{1}, \cdots, i \mu_{n}$ are the characteristic roots of $\frac{1}{2}\left(A-\bar{A}^{\prime}\right)$, then α lies between the greatest and the least of $\rho_{1}, \cdots, \rho_{n}$, and $|\beta|$ does not exceed the greatest of $\left|\mu_{1}\right|, \cdots,\left|\mu_{n}\right|$.

In some cases the theorems just cited give very good limits for the characteristic roots of a matrix, while in other cases the limits are not so restricted. Thus in the case of a real orthogonal matrix these theorems may merely state that the characteristic roots lie in the square $x= \pm 1, y= \pm 1$. In this paper we shall give a criterion which in some cases, notably in the case of a real orthogonal matrix, give more restricted limits than the theorems above.
2. Reduction of a Matrix to a Semi-Unitary Form. Let A be any square matrix of order n. Then $A \bar{A}^{\prime}$ is Hermitian and there exists a unitary matrix κ (that is, $\kappa \bar{\kappa}^{\prime}=I$) such that

$$
\kappa A \bar{A}^{\prime} \bar{\kappa}^{\prime}=M
$$

where $M \ddagger$ is zero except in the diagonal, and the elements in the diagonal are the (real) characteristic roots $\rho_{1}, \rho_{2}, \cdots, \rho_{n}$ of $A \bar{A}^{\prime}$. We may write

$$
\begin{equation*}
M=\kappa A \bar{\kappa}^{\prime} \kappa \bar{A}^{\prime} \bar{\kappa}^{\prime}=B \bar{B}^{\prime} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\kappa A \bar{\kappa}^{\prime} . \tag{2}
\end{equation*}
$$

From (1) the elements $b_{i j}$ of B evidently satisfy the conditions

$$
\begin{equation*}
\sum_{t}^{1, \cdots, n} b_{i t} \bar{b}_{j t}=\rho_{i} \delta_{i j}, \quad(i, j=1, \cdots, n) \tag{3}
\end{equation*}
$$

[^1]where $\delta_{i j}$ is the Kronecker symbol, and equals 1 if $i=j$; 0 if $i \neq j$. In view of the conditions (3) we shall say that B is in a semi-unitary (semi-orthogonal, if B is real) form. If $\rho_{i}=1,(i=1, \cdots, n), B$ is unitary. We may then state the following theorem.

Theorem I. If A is any square matrix of order n there exists a unitary matrix κ such that $\kappa A \bar{\kappa}^{\prime}=B$, where B is in a semi-unitary form.

If M is of rank r, κ may be so chosen that $\rho_{i}>0$, $(i=1, \cdots, r) ; \rho_{i}=0,(i=r+1, \cdots, n)$. Since $\rho_{i}=\sum_{t} b_{i t} \bar{b}_{i t}=0$, $(i=r+1, \cdots, n)$, evidently $\quad b_{i t}=0, \quad(i=r+1, \cdots, n ; t=1$, \cdots, n) ; that is, the last $n-r$ rows of B consist entirely of zeros, so that B is of rank at most r. Hence, B must be of rank exactly r. Since the rank of A equals the rank of B, and the rank of $A \bar{A}^{\prime}$ equals the rank of M, incidentally we have given a proof of the following well known theorem.

Theorem. If A is any square matrix of order n, the ranks of A and $A \bar{A}^{\prime}$ are the same.*
3. The Characteristic Roots of $A \bar{A}^{\prime}$. Referring to the matrix B defined as in (1) and (2), let us form a non-singular matrix $C=\left(c_{i j}\right)$ by replacing the zeros in the last $n-r$ rows of B by elements $\left(x_{s 1}, x_{s 2}, \cdots, x_{s n}\right) \neq(0,0, \cdots, 0)$, such that

$$
\begin{equation*}
\sum_{t}^{1, \cdots, n} b_{i t} \bar{x}_{s t}=0, \quad(i=1, \cdots, r ; s=1, \cdots, n-r) \tag{4}
\end{equation*}
$$

and, moreover, such that

$$
\sum_{t}^{1, \cdots, n} x_{i t} \bar{x}_{j t}=0, \quad(i, j=1, \cdots, n-r ; i \neq j)
$$

Thus, we may find ($\bar{x}_{11}, \bar{x}_{12}, \cdots, \bar{x}_{1 n}$) by determining a nonzero solution of the $n-r$ linear homogeneous equations (4). Having obtained $\left(x_{11}, \cdots, x_{1 n}\right)$ we may proceed to find

[^2]($\bar{x}_{21}, \bar{x}_{22}, \cdots, \bar{x}_{2 n}$) by adjoining to the system (4) the additional linear homogeneous equation
$$
\sum_{t}^{1, \cdots, n} x_{1 t} \bar{x}_{2 t}=0 ;
$$
and so on. If $\sum_{t}^{1, \cdots, n} c_{i t} \bar{c}_{i t}=\rho_{i},(i=1, \cdots, n)$, then $\rho_{i}>0$ and if we write
$$
\chi_{i j}=\frac{c_{i j}}{\left(\rho_{i}\right)^{1 / 2}}, \quad(i, j=1, \cdots, n)
$$
the matrix χ thus obtained is a unitary matrix. It is evident from the manner in which χ was built up that $B \bar{\chi}^{\prime}$ is zero except in the diagonal. The elements in the last $n-r$ places in the diagonal are also zero, while those in the first places are $\left(\rho_{i}\right)^{1 / 2}$, the square roots of the characteristic roots of $A \bar{A}^{\prime}$. Since $B \bar{\chi}^{\prime}$ is real and symmetric, the characteristic roots of
$$
N=\chi \bar{B}^{\prime} B \bar{\chi}^{\prime}=\left(B \bar{\chi}^{\prime}\right)^{2}
$$
are the squares of the characteristic roots of $B \bar{\chi}^{\prime}$, and are therefore the characteristic roots of $A \bar{A}^{\prime}$. But
$$
N=\chi \overline{B^{\prime}} B \bar{\chi}^{\prime}=\chi \kappa \bar{A}^{\prime} \bar{\kappa}^{\prime} \kappa A \bar{\kappa}^{\prime} \bar{\chi}^{\prime}=\chi \kappa \bar{A}^{\prime} A \bar{\kappa}^{\prime} \bar{\chi}^{\prime}=\psi \bar{A}^{\prime} A \bar{\psi}^{\prime}
$$
where ψ is the unitary matrix $\chi \kappa$. Thus it follows* that the characteristic roots of $\bar{A}^{\prime} A$ are the same as those of N and therefore of $A \bar{A}^{\prime}$. Hence we have the following theorem.

Theorem II. If A is any square matrix of order n the characteristic roots of $A \bar{A}^{\prime}$ are the same as the characteristic roots of $\bar{A}^{\prime} A$.

Since the unitary matrices κ, χ above are such that

$$
\kappa A \bar{\kappa}^{\prime}=B, \text { and } B \bar{\chi}^{\prime}=\chi \bar{B}^{\prime}
$$

it follows at once that

$$
\kappa A \bar{\kappa}^{\prime} \bar{\chi}^{\prime}=B \bar{\chi}^{\prime}=\chi \bar{B}^{\prime}=\chi \kappa \bar{A}^{\prime} \bar{\kappa}^{\prime}
$$

Hence

[^3]$$
\bar{\kappa}^{\prime} \bar{\chi}^{\prime} \kappa A \bar{\kappa}^{\prime} \bar{\chi}^{\prime} \kappa=\bar{A}^{\prime} .
$$

Writing $\bar{\kappa}^{\prime} \bar{\chi}^{\prime} \kappa=\phi$, we have the following theorem.
Theorem III. If A is any square matrix of order n there exists a unitary matrix ϕ such that

$$
\begin{equation*}
\phi A \phi=\bar{A}^{\prime} \tag{5}
\end{equation*}
$$

In this connection compare Hilton, Homogeneous Linear Substitutions, Ex. 6, p. 124.

Since from (5)

$$
A \phi=\bar{\phi}^{\prime} \bar{A}^{\prime}=(\overline{A \phi})^{\prime},
$$

$A \phi$ is Hermitian, so that we have the following theorem.
Theorem IV. If A is any square matrix of order n, there exists a unitary matrix ϕ such that $A \phi$ is Hermitian.
4. The Characteristic Roots of A. From (2) the characteristic roots of A are evidently the same as the characteristic roots of B. Suppose then that λ is a characteristic root of B so that there exists a set $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \neq(0,0, \cdots, 0)$ such that

$$
\begin{equation*}
\sum_{t}^{1, \cdots, n} b_{t i} x_{t}=\lambda x_{i}, \quad(i=1, \cdots, n) \tag{6}
\end{equation*}
$$

Taking the conjugates of both members of each of these equations, we have

$$
\begin{equation*}
\sum_{s}^{1, \cdots, n} \bar{b}_{s i} \bar{x}_{s}=\bar{\lambda} \bar{x}_{i}, \quad(i=1, \cdots, n) . \tag{7}
\end{equation*}
$$

Multiplying corresponding equations in (6) and (7), member for member, and summing as to i, we find

$$
\sum_{s, t}^{1, \cdots, n}\left[{ }^{1, \cdots, n} b_{i} b_{i} \bar{b}_{s i}\right] x_{t} \bar{x}_{s}=\lambda \bar{\lambda} \sum_{i}^{1, \cdots, n} x_{i} \bar{x}_{i} ;
$$

that is

$$
\sum_{i}^{1, \ldots, n} \rho_{i} x_{i} \bar{x}_{i}=\lambda \bar{\lambda} \quad \sum_{i}^{1, \cdots, n} x_{i} \bar{x}_{i} .
$$

Let G be the largest and s the smallest of the characteristic roots of $A \bar{A}^{\prime}$. Then

$$
\lambda \bar{\lambda} \sum x_{i} \bar{x}_{i} \leqq G \sum x_{i} \bar{x}_{i}
$$

so that $\lambda \bar{\lambda} \leqq G$. Similarly, $\lambda \bar{\lambda} \geqq s$; i. e.,

$$
s \leqq \lambda \bar{\lambda} \leqq G
$$

In particular, if A is unitary so that $A \bar{A}^{\prime}=I$, then $G=s=1$, so that $1 \leqq \lambda \bar{\lambda} \leqq 1$; i.e., $\lambda \bar{\lambda}=1$, as is well known. Hence we have the following theorem.

Theorem V. If λ is a characteristic root of a square matrix A and if G and s are respectively the largest and the smallest characteristic roots of $A \bar{A}^{\prime}$, then

$$
\begin{aligned}
& \qquad s \leqq \lambda \bar{\lambda} \leqq G . \\
& \text { The University of North Carolina }
\end{aligned}
$$

[^0]: * Presented to the Society, December 28, 1927.
 \dagger Bendixson, Sur les racines d'une équation fondamentale, Acta Mathematica, vol. 25 (1902), pp. 359-365.

[^1]: * Hirsch, Acta Mathematica, vol. 25 (1902), p. 367.
 \dagger Bromwich, On the roots of the characteristic equation of a linear substitution, Acta Mathematica, vol. 30 (1906), pp. 295-304.
 \ddagger Hilton, Homogeneous Linear Substitutions, Oxford, 1914, p. 41.

[^2]: * Hilton, Homogeneous Linear Substitutions, Exercise 4, p. 51.

[^3]: * Hilton, Homogeneous Linear Substitutions, p. 20.

