A PROPERTY OF THE LEVEL LINES OF A REGION WITH A RECTIFIABLE BOUNDARY*

BY G. A. PFEIFFER

1. Introduction. Before stating the result of this paper let me recall that a level line of a region[†] in a plane is the locus of the equation g(x, y; a, b) = c, where g(x, y; a, b) is the Green's function of the region which has the point (a, b)as its pole, and c is a positive constant. The set of all level lines of the region, with the point (a, b) fixed and c any positive constant, is called a *pencil of level lines* of the region, and the fixed point (a, b) is called the *pole* of that pencil. Any pencil Σ of level lines of a region which is in a plane and which has a connected boundary containing more than one point, is the image of the set of circles concentric with and interior to any circle K under any transformation Π which maps in a one-to-one and conformal way the interior of K on Σ , such that the pole of the pencil of level lines corresponds to the center of K; and, conversely, the image of the set of circles concentric with and interior to a circle K under any transformation Π which maps in a one-to-one and conformal way the interior of K on a planar region Σ is a pencil of level lines of Σ , which has the image under Π of the center of K as its pole. Thus, a pencil of level lines of Σ is a one-parameter set of simple closed curves, and the value of the parameter t of a level line G of such a pencil of level lines may be taken as the length of the radius of the circle to which G corresponds under II. Taking K as the unit circle, then t varies between 0 and 1. The symbol $[G_t]$ denotes a pencil of level lines of the region

^{*} Presented to the Society, May 7, 1927, as part of a paper of the title Certain sequences of curves which approach a rectifiable boundary from within.

[†] A region in a plane is a set of points in a plane such that there exists a planar neighborhood of each point of the set which contains only points of the set.

 Σ such that the level line G_t corresponds under II to the circle which is concentric with the unit circle and which has a radius of length t (0 < t < 1).

Now, if $\Lambda(t)$ denotes the function of t defined for 0 < t < 1and such that $\Lambda(t_1)$ is the length of the level line G_{t_1} of the pencil of level lines $[G_t]$, 0 < t < 1, then it is a result of a theorem of Hardy, referred to below, that $\Lambda(t)$ is an increasing continuous function of t for 0 < t < 1; that is, if $0 < t_1 < t_2 < 1$, then $\Lambda(t_1) < \Lambda(t_2)$. It is a simple consequence of the formula for the length of an analytic transform of a rectifiable curve, which is derived in §2 below, that $\lim_{t\to 0} \Lambda(t) = 0$ and nothing further is said about that; but much of the following proof is devoted to showing that if the boundary of Σ is a rectifiable simple closed curve, then $\lim_{t\to 1} \Lambda(t)$ is the length of the boundary of Σ .

The result of this paper is contained in the following two theorems. The theorems are closely connected and their proofs are combined in the demonstration which follows.

THEOREM. The function $\Lambda(t)$ of t, which is defined in the interval $0 \leq t \leq 1$, and which is such that $\Lambda(t_1)$, if $0 < t_1 < 1$, is the length of the level line G_{t_1} of the pencil $[G_t]$, 0 < t < 1, of level lines of the planar region Σ whose boundary is a rectifiable simple closed curve and such that $\Lambda(0) = 0$ and $\Lambda(1) = the$ length of the boundary of Σ , is an increasing* continuous function of t in the (closed) interval $0 \leq t \leq 1$.

DEFINITION. An approximating sequence of regions of the region Σ is a sequence of regions $\{\Sigma_n\}$, $n=1, 2, 3, \cdots$, such that every limit point of each Σ_n is a point of Σ and every point of Σ belongs to all but a finite number of the regions Σ_n .

1928.]

^{*} That is, if $0 \leq t_1 < t_2 \leq 1$, then $\Lambda(t_1) < \Lambda(t_2)$.

[†] It follows readily from this definition that if the region Σ is bounded then an approximating sequence of regions $\{\Sigma_n\}$, $n=1, 2, 3, \cdots$, of the region Σ contains a subsequence of regions $\{\Sigma_{n_i}\}$, $i=1, 2, 3, \cdots$, which is such that (a) every limit point of any region Σ_{n_i} belongs to Σ and to the succeeding region $\Sigma_{n_{i+1}}$ and (b) every point of Σ is in all but a finite number of the regions Σ_{n_i} .

DEFINITION. An approximating sequence of curves of the region Σ is a sequence of curves $\{C_n\}, n=1, 2, 3, \cdots$, such that each curve C_n is the boundary of a region Σ_n of an approximating sequence of regions $\{\Sigma_n\}$, $n = 1, 2, 3, \cdots$, of the region Σ .

THEOREM. If the boundary of a planar region Σ is a simple closed curve which is rectifiable, then there exist approximating sequences of curves $\{C_n\}, n=1, 2, 3, \cdots, of$ the region Σ such that the curves C_n are level lines of any given pencil of level lines of Σ and, if l_n denotes the length of the curve C_n , $l_n < l_{n+1}$ and $\lim_{n \to \infty} l_n$ is the length of the boundary of Σ .

2. The Length of an Analytic Transform of a Rectifiable *Curve.* Let the function w = f(z) be analytic in the interior, i(K), of the unit circle, K, and map in a one-to-one way i(K)on the region Σ of the theorem. Let C be a rectifiable curve in i(K) and C' its image under the transformation w = f(z). Then the length, l', of C' is

$$\lim_{n\to\infty}\left(\left|\Delta w_{n_1}\right|+\left|\Delta w_{n_2}\right|+\cdots+\left|\Delta w_{n_r}\right|\right),$$

where $\Delta w_{n_i} = f(z_{n_i}) - f(z_{n_{i-1}})$, where $z_{n_0}, z_{n_1}, z_{n_2}, \cdots, z_{n_r}$, $z_{n_{r+1}} = z_0$ are points on C such that $|z_{n_i} - z_{n_{i-1}}| < \delta_n > 0$, and where $\lim_{n\to\infty} \delta_n = 0$.

If Δs_{n_i} is the length of the arc of C whose end points are z_{n_i} and $z_{n_{i-1}}$ and which does not contain as an inner point the point $z = z_{n_0}$, then

$$l' = \lim_{n \to \infty} \sum_{i=1}^{r} \left| \frac{\Delta w_{n_i}}{\Delta z_{n_i}} \right| \cdot \Delta s_{n_i}, \qquad \Delta z_{n_i} = z_{n_i} - z_{n_{i-1}};$$

and, because of the uniformity of the approach of $\Delta w/\Delta z$ to dw/dz along C, dw/dz being continuous on C, it follows that

$$l' = \lim_{n \to \infty} \sum_{i=1}^{r} \left(\lim_{z \to z_{n_i}} \left| \frac{\Delta w}{\Delta z} \right| \right) \Delta s_{n_i}.$$
$$l' = \int \left| \frac{dw}{ds} \right| ds.$$

Hence

$$l' = \int_C \left| \frac{dw}{dz} \right| ds.$$

3. The Level Lines of a Polygonal Region. Let i(J) denote a region whose boundary is a simple polygon J, and let w=f(z) be a function which is analytic in the interior i(K)of the unit circle K and which maps in a one-to-one way i(K) on i(J). Then w=f(z) is analytic at any point of the circle K whose image is not a vertex of J and if w=f(a) is a vertex of J, then at any point of i(K) different from z=ain some neighborhood of z=a the derivative of w=f(z)is $(z-a)^{\mu} \lambda(z)$, where $\lambda(z)$ is analytic at z=a and $-1 < \mu < 1.*$ In fact, $\mu = \alpha/\pi - 1$, where α is the measure in radians of the interior angle of the polygon J whose vertex is the point w=f(a).

Let the point $w = f(a_i)$ be a vertex of the polygon J and U_{a_i} a neighborhood of $z = a_i$ such that at every point of i(K) which is in U_{a_i} and different from $z = a_i, f'(z) = (z - a_i)^{\mu_i} \lambda_i(z)$, where $\lambda_i(z)$ is analytic at $z = a_i$ and $-1 < \mu_i < 1$. Further, let Γ_i denote a circular arc concentric with K, and contained in U_{a_i} , such that its mid-point $z = b_i$ is on the radius of K through $z = a_i$. Let $z = c_i$ be an end point of this arc. Then, if $-1 < \mu_i < 0$ and M_i is a bound of $|\lambda_i(z)|$ in U_{a_i} ,

$$\int_{\Gamma} |f'(z)| ds \leq M_i \int_{\Gamma_i} (|z-a_i|)^{\mu_i} ds \leq M_i \int_{\Gamma_i} (|z-b_i|)^{\mu_i} ds.$$

If η is an arbitrary positive number, then there exists a positive number ξ such that $|z-b_i|/(\widehat{zb_i}) \ge 1-\eta$ if $\widehat{zb_i} < \xi$, where $\widehat{zb_i}$ denotes the length of the sub-arc of Γ_i whose end points are z=z and $z=b_i$. Then

$$\begin{split} &\int_{\Gamma_i} (\left| z - b_i \right|)^{\mu_i} ds \leq (1 - \eta)^{\mu_i} \int_{\Gamma_i} (\widehat{zb}_i)^{\mu_i} ds \\ &= 2(1 - \eta)^{\mu_i} \int_0^{l_i/2} s^{\mu_i} ds = 2(1 - \eta)^{\mu_i} \frac{1}{\mu_i + 1} \cdot \frac{l^{\mu_i + 1}}{2^{\mu_i + 1}}, \end{split}$$

1928.]

^{*} Bieberbach, Lehrbuch der Funktionentheorie, vol. II, p. 34 and p. 37. Also Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, Part II, p. 85.

G. A. PFEIFFER

where l_i is the length of Γ_i and if $\eta < 1/2$, then

$$\int_{\Gamma_{i}} (|z - b_{i}|)^{\mu_{i}} ds < \frac{1}{2^{2\mu_{i}}(\mu_{i} + 1)} l_{i}^{\mu_{i} + \tau}$$

Again, if $0 \leq \mu_i < 1$ and M_i is a bound of $|\lambda_i(z)|$ in U_{a_i} , we have

$$\begin{split} \int_{\Gamma_i} |f'(z)| \, ds &\leq M_i \int_{\Gamma_i} (|z - a_i|)^{\mu_i} ds \leq M_i \int_{\Gamma_i} |c_i - a_i| \, ds \\ &\leq M_i \left(|a_i - b_i| + \frac{l_i}{2} \right) l_i, \end{split}$$

where l_i is the length of the arc Γ_i . Hence if ϵ is any positive number there exists a positive number δ_i such that if Γ_i is any circular arc which is concentric with and either interior to or on the given circle K and contained in U_{a_i} and which has a length $l_i < \delta_i$, then

$$\int_{\Gamma_i} |f'(z)| \, ds < \epsilon.$$

Now, let σ_i denote an arc on the circle K which has $z = a_i$ as its mid-point and a length l_i which is less than δ_i and, further, such that no two arcs σ_i have a point in common and let R denote the set of all points which are interior to Kand which do not belong to any sector bounded by the arc σ_i and the radii of K through its end points; also let \overline{R} denote the set of points consisting of the points of R and of the boundary of R. Then w = f'(z) is analytic in \overline{R} and hence there exists a positive number δ such that $|f'(z_1) - f'(z_2)| < \epsilon$ if $z = z_1$ and $z = z_2$ are any two points in \overline{R} such that $|z_1 - z_2| < \delta$. Now, if d is a positive number less than the radius of each U_{a_i} , let K' denote a circle interior to and concentric with K and having a radius which differs from that of K by less than d and also less than δ . Then let τ_i denote any arc of K which contains no arc σ_i and whose end points are also end points of arcs σ_i and let σ'_i and τ'_i denote the arcs of K' which are composed of the points of intersection of the circle K'

660

1928.]

and the radii of K through all the points of σ_i and all the points of τ_i respectively. It follows that

$$\int_{\tau_i'} \left| f'(z) \right| ds = \int_{\tau_i} \frac{r-d}{r} \left(\left| f'(z) \right| + \eta(z) \right) ds,$$

where r is the radius of K and $|\eta(z)| < \epsilon$. If h denotes the length of the polygon J and h' the length of the transform of K' under the transformation w = f(z) and n the number of vertices of J, then

$$h' = \sum_{i=1}^{n} \int_{\sigma_{i}'} |f'(z)| ds + \sum_{i=1}^{n} \int_{\tau_{i}'} |f'(z)| ds$$
$$< n\epsilon + \sum_{i=1}^{n} \int_{\tau_{i}} |f'(z)| ds + \frac{r-d}{r} \epsilon h,$$

and

$$h' > \sum_{i=1}^n \int_{\tau_i} \left| f'(z) \right| ds - \frac{d}{r}h - \frac{r-d}{r}\epsilon h.$$

Since

$$h - n\epsilon < \sum_{i=1}^n \int_{\tau_i} |f'(z)| ds < h,$$

it follows that

$$h - n\epsilon - \frac{d}{r}h - \frac{r-d}{r}\epsilon h < h' < n\epsilon + h + \frac{r-d}{r}\epsilon h.$$

Now if $d < \epsilon$, then

$$h - \left(n + \frac{h}{r} + h\right)\epsilon < h' < h + (n + h)\epsilon,$$

or

$$|h-|h' < \left(n+\frac{h}{r}+h\right)\epsilon.$$

Hence if ρ is any positive number and d is sufficiently small then $|h-h'| < \rho$.

From this result follows immediately, as far as it concerns the $\lim_{n\to\infty} l_n$, the special case of the second theorem of the paper in which the region Σ is the interior of a simple polygon in a plane.

4. The Region Σ in General. Let Σ be a region in the wplane and let the boundary of Σ be a rectifiable simple closed curve, C. Then no level line of Σ has a length greater than the length of the boundary of Σ . For let there exist a level line of Σ , say G, which has a length, g, which is greater than the length, l, of C. It is assumed that w = 0 is an interior point of G; no loss of generality follows from this assumption. Then there exists a function w = f(z) which is analytic in the unit circle and which maps in a one-to-one and conformal way the interior of the unit circle on Σ such that f(0) = 0 and f'(0) = 1 and such that G is the image under the transformation w = f(z) of a circle, H, concentric with the unit circle, K. Further, let $\{P_n\}, n=1, 2, 3, \cdots$, be a sequence of simple polygons inscribed in C which are such that $\lim_{n \to \infty} d_n = 0$, where d_n is the length of a side of P_n which is not shorter than any other side of P_n , and such that w = 0is an interior point of each P_n . Then there exists a function $w = f_n(z)$ which maps the interior of the circle |z| = 1 on the interior of P_n in a one-to-one and conformal way such that the point w = 0 corresponds to the point z = 0 and the derivative of the function $w = f_n(z)$ at z = 0 is unity. By a theorem* of Carathéodory, and the fact that there is only one function which maps the interior of the unit circle on Σ in a one-to-one and conformal way such that w = 0 corresponds to z = 0 and the derivative of the mapping function at z=0 is unity, it follows that the sequence of functions $\{w = f_n(z)\}, n = 1, 2,$ 3, \cdots , approaches the function w = f(z), |z| < 1, uniformly on any closed set of points which is contained in the interior of the unit circle. Consequently the sequence of derivatives of the functions $w = f_n(z)$, $\{w = f'_n(z)\}, n = 1, 2, 3, \cdots$, converges uniformly to the derivative of w = f(z) on any closed set of points which is in the interior of the unit circle.

662

^{*} See Mathematische Annalen, vol. 72 (1912), pp. 120–126. Also Bieberbach, Lehrbuch der Funktionentheorie, vol. II, pp. 12–15.

Now, let ν be a positive number less than g-l and p a positive integer such that

$$\left|f'(z) - f_p'(z)\right| < \frac{\nu}{2\pi},$$

for z on H. Then

$$\left|f_{p}'(z)\right| = \left|f'(z)\right| + \eta(z),$$

where $|\eta(z)| < \nu/2\pi$ for z on H, and

$$\int_{H} |f_p'(z)| \, ds = \int_{H} |f'(z)| \, ds + \int_{\mathbb{H}} \eta(z) ds.$$

But

$$\int_{H} \left| f'(z) \right| ds = g \text{ and } \int_{H} \left| f_{p}'(z) \right| ds$$

is the length of the image of H under the transformation $w = f_p(z)$, |z| < 1. The latter image is a level line of the pencil of level lines of the polygonal region bounded by P_p , which has the point w = 0 as its pole. If the length of this level line is denoted by g_p , then $g_p > g - \nu$ and hence $g_p > l$.

According to the result for polygonal regions which was obtained above, there exists a circle, H', with center z=0 and a radius of length less than unity but greater than the length of a radius of H such that the length, g'_p , of the image of H' under the transformation $w=f_p(z)$ differs from the length, l_p , of P_p by an amount less than g_p-l . Since $l_p < l$ it follows that $g'_p < g_p$. But this result contradicts the fact that by a theorem* of Hardy in connection with the formula for the length of an analytic transform of a rectifiable curve, which is given above. It follows that $g'_p > g_p$.

^{*} See Proceedings of the London Mathematical Society, (2), vol. 14 (1915), pp. 269–277. Also Landau, *Ergebnisse der Funktionentheorie*, p. 85. The theorem is that if w = f(z) is analytic and not constant for |z| < R, then $\int_0^{2\pi} |f(re^{i\theta})| d\theta, z = re, ^{i\theta} 0 \le \theta \le 2\pi$ and 0 < r < R, is a continuous increasing function of r for 0 < r < R.

Only a special case of this theorem is used above. The functions concerned are only those which map in a one-to-one and conformal way the interior of the unit circle on the interior of a simple polygon.

Thus the length of any level line of Σ is not greater than the length of the boundary of Σ . The theorem of Hardy then implies that the length of any level line of Σ is less than the length of the boundary of Σ .

That any sequence of level lines $\{G_{t_n}\}, t_n < t_{n+1}, n = 1, 2, 3, \cdots$, and $\lim_{n\to\infty} t_n = 1$, which belong to any given pencil of level lines $[G_t], 0 < t < 1$, of level lines of any planar region Σ whose boundary is connected and contains more than one point is an approximating sequence of curves of Σ follows easily from the one-to-one conformal mapping of the interior of the unit circle on Σ , which determines the sequence of level lines $\{G_{t_n}\}, t_n < t_{n+1}, n = 1, 2, 3, \cdots$, as the image of a sequence of circles, $\{H_n\}, n = 1, 2, 3, \cdots$, which are concentric with and interior to the unit circle and such that $\lim_{n\to\infty} r_n = 1$, where r_n is the length of the radius of the circle H_n . Evidently, the level line G_{t_n} is in the interior of the level line $G_{t_{n+1}}$.

Now, if the boundary of Σ is a rectifiable simple closed curve of length l, it follows readily from certain known results* that if l_n is the length of the rectifiable curve C_n of the approximating sequence of curves $\{C_n\}$, $n=1, 2, 3, \cdots$, of the region Σ and if $\lim_{n\to\infty} l_n$ exists, then we have $\lim_{n\to\infty} l_n \ge l$. Hence, with what has preceded, if l_{t_n} is the length of the level line G_{t_n} of the sequence of level lines $\{G_{t_n}\}$, $t_n < t_{n+1}$, $n=1, 2, 3, \cdots$, $\lim_{n\to\infty} t_n=1$, then $l_{t_n} < l$ and, since by the theorem of Hardy $l_{t_n} < l_{t_{n+1}}$, $n=1, 2, 3, \cdots$, it follows that $\lim_{n\to\infty} l_{t_n} = l$. Thus $\lim_{t\to 1} \Lambda(t) = l$ and the sequence of level lines $\{G_{t_n}\}$, $t_n < t_{n+1}$, $n=1, 2, 3, \cdots$, $\lim_{n\to\infty} t_n = 1$, is an approximating sequence of curves of Σ as specified in the second theorem.

COLUMBIA UNIVERSITY

^{*} In particular, Theorem V, p. 519 of Hahn, Theorie der reellen Funktionen, vol. I.