# ON THE LOCI OF THE LINES INCIDENT WITH $k(r-2)$-SPACES IN $S_{r}$ 

BY B. C. WONG
The problem of the determination of the number $N_{r}$ of lines that meet $2 r-2$ given ( $r-2$ )-spaces in $S_{r}$ has been solved.* Schubert's symbolic or enumerative method is powerful for the solution of problems of this kind and has indeed been the one used, but it does not offer any insight into the nature of the geometry involved. It is the purpose of this paper to re-determine the number $N_{r}$ and also to obtain the loci of the $\infty^{2 r-2-k}$ lines incident with $k$ given ( $r-2$ )-spaces in $S_{r}$, where $r<k \leqq 2 r-2$.

For our purpose we make use of the known theorem: $\dagger$ The locus of the $\infty^{r-2}$ lines incident with $r$ general ( $r-2$ )spaces in $S_{r}$ is a hypersurface $V_{r-1}^{r-1}$.

Now consider $r$ of the given ( $r-2$ )-spaces, say $S_{r-2}^{(i)}[i=1$, $2, \cdots, r]$. They yield a $V_{r-1}^{r-1}$ whose generators are incident with them. Any of the remaining $k-r$ given ( $r-2$ )spaces, say $S_{r-2}^{(r+1)}$, meets $V_{r-1}^{r-1}$ in a $V_{r-3}^{r-1}$. Any hyperplane $S_{r-1}^{\prime}$ through $S_{r-2}^{(r+1)}$ meets $S_{r-2}^{(i)}$ in $r(r-3)$-spaces. The $\infty{ }^{r-4}$ lines that meet these $r(r-3)$-spaces are in $S_{r-1}^{\prime}$ and hence meet $S_{r-2}^{(r+1)}$, and they form a $V_{r-3}^{M_{r}^{\prime}}$ whose order $M_{r}^{\prime}$ is to be determined later. Hence the $\infty^{r-3}$ lines incident with $r+1(r-2)$-spaces in $S_{r}$ form a $V_{r_{-2}}^{M_{r}+M_{r}^{\prime}}$ (writing $M_{r}$ for $r-1$ ), for it is met by $S_{r-1}^{\prime}$ in a $V_{r-3}^{M_{r}+M_{r}^{\prime}} \equiv V_{r-3}^{M_{r}}+V_{r-3}^{M_{-}^{\prime}}$.

Now the $(r+2)$ th ( $r-2$ )-space, $S_{r-2}^{(r+2)}$, meets $V_{r-3}^{M_{r}+M_{r}^{\prime}}$ in a $V_{r-4}^{M_{r}+M_{r}}$. A hyperplane $S_{r-1}^{\prime \prime}$ through $S_{r-2}^{(r+2)}$ intersects the other $r+1(r-2)$-spaces in $r+1(r-3)$-spaces and the $\infty^{r-5}$ lines incident with the latter form a $V_{r-4}^{M_{r}^{\prime \prime}}$. Hence the

[^0]$\infty^{r-4}$ lines incident with $r+2(r-2)$-spaces in $S_{r}$ form a
 $+V_{r-4}^{M_{r}^{\prime \prime}}$.

Continuing this process of reasoning we soon come to $S_{r-2}^{(k)}$, the $k$ th or the last of the given ( $r-2$ )-spaces, and find that the $\infty^{2 r-k-2}$ lines meeting $k(r-2)$-spaces in $S_{r}$ form a
 $S_{r-1}$ through $S_{r-2}^{(k)}$ in a $V_{2 r-k-2}^{M_{r}+M_{r^{\prime}}+\cdots+M_{r}^{(k-r)}}$ composed of a $V_{2 r-k-2}^{M_{r}+M_{1}^{\prime}+\cdots+M_{r}^{(k-r-1)}}$ and a $V_{2 r-k-2}^{M_{r}^{\prime}(k-r)}$. The former is contained in $S_{r-2}^{(k)}$ and the latter is the locus of the $\infty^{2 r-k-3}$ lines incident with the $k-1(r-3)$-spaces in which $S_{r-1}$ meets the other $k-1(r-2)$-spaces supposed to have already been considered.

If $k=2 r-3$, the $\infty^{1}$ lines incident with $2 r-3(r-2)$ spaces form a $V_{2}^{N_{r}}$ where

$$
\begin{equation*}
N_{r}=\sum_{j=0}^{r-3} M_{r}^{(j)} . \tag{1}
\end{equation*}
$$

Since a general ( $r-2$ )-space can have only $N_{r}$ points in common with $V_{2}^{N_{r}}$, the required number of lines meeting $2 r-2$ given ( $r-2$ )-spaces is $N_{r}$ given by (1).

Now to determine the values of $M_{r}^{(j)}$. Replacing $r$ by $r+1$ in (1), we have

$$
N_{r+1}=\sum_{j=0}^{r-2} M_{r+1}^{(j)},
$$

where

$$
\begin{equation*}
M_{r+1}^{(j)}=\sum_{h=0}^{j} M_{r}^{(h)} \tag{2}
\end{equation*}
$$

Then, from (1) and (2),

$$
\begin{equation*}
N_{r}=M_{r+1}^{(r-2)}=M_{r+1}^{(r-3)} \tag{3}
\end{equation*}
$$

Decreasing $r$ by unity in (2) and writing out the resulting equalities for all values of $j$ from zero to $r-3$, we obtain, without difficulty, remembering $M_{r}=r-1$,

$$
\begin{equation*}
M_{r}^{(j)}=\sum_{j=0}^{r-3} M_{j+3}^{(j-1)}=\frac{(r+j-1)!(r-j-2)}{(r-1)!(j+1)!} \tag{4}
\end{equation*}
$$

and also

$$
\begin{equation*}
M_{r+1}^{(j)}=\frac{(r+j)!(r-j-1)}{r!(j+1)!} \tag{5}
\end{equation*}
$$

Putting $j=r-2$ or $r-3$, we have, from (3),

$$
N_{r}=\frac{(2 r-2)!}{r!(r-1)!}
$$

the required formula for $N_{r}$ in terms of $r$.
The locus of the $\infty^{2 r-k-2}$ lines that meet $k$ given ( $r-2$ )spaces has been obtained and its order is $\sum_{h=0}^{k-r} M_{r}^{(h)}$ and, on account of (2) and (5), this is equal to

$$
M_{r+1}^{(k-r)}=\frac{k!(2 r-k-1)}{r!(k-r-1)!} .
$$

Attention is called to the fact that a general ( $r-2$ )-space meets this locus in a $V_{2 r-k-3}$ of the same order but there are exactly $k$, that is, the given, $(r-2)$-spaces each of which meets it in a $V_{2 r-k-2}$ of order

$$
\sum_{h=0}^{k-r-1} M_{r}^{(h)}=M_{r+1}^{(k-r-1)}=\frac{(k-1)!(2 r-k)}{r!(k-r)!}
$$

A hyperplane through one of these $k(r-2)$-spaces meets the locus again in a $V_{2 r-k-2}$ of order

$$
M_{r}^{(k-r)}=\frac{(k-1)!(2 r-k-2)}{(r-1)!(k-r+1)}
$$

It is to be noted that these formulas do not hold for $k=r$; for, if $k=r, M_{r}=r-1, M_{r+1}=r$.

The University of California


[^0]:    * See C. Segre, Mehrdimensionale Räume, Encyklopädie der Mathematischen Wissenschaften, vol. III: 2, pp. 813, 814 where full references are given.
    $\dagger$ This Bulletin, vol. 32, No. 5, pp. 553-554.

