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CANONICAL CONFIGURATIONS ASSOCIATED 
WITH A SURFACE* 

BY E. P. LANE 

1. Introduction. After summarizing briefly for subsequent 
use some of the theory of the projective differential geometry 
of a surface referred to its asymptotic net, we next present 
some very convenient formulas for differentiating the coordi
nates of a point referred to the local tetrahedron customarily 
employed when the differential equations of the surface are 
in Fubini's canonical form. Their use is first illustrated in 
connection with certain configurations generated by different 
parts of the local tetrahedron at a variable point on the 
surface, and then they are applied in a brief study of the 
first and second canonical surfaces, the former being en
veloped by the canonical plane and the latter being generated 
by the canonical point. Finally, the general theory of a 
pencil of conjugate nets on a surface is applied to a new 
covariant pencil of conjugate nets, and a sequence of such 
pencils is constructed. 

2. Analytic Foundations. In ordinary projective space the 
four homogeneous coordinates #(1), • • • , #(4) of a point P 
on an analytic non-ruled surface S are functions of two 
independent variables u, v. If the asymptotic net is para
metric and if the proportionality factor of the coordinates 
is suitably chosen, the functions x satisfy two partial 
differential equations in Fubini's canonical form 

J Xuu ss pX -j- UUXU T" PXV, _ i 

(1) ) - < ia l<? = log(07)J. 

* Presented to the Society, September 6, 1928. 
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The most general transformation of proportionality factor 
and parameters preserving this canonical form is 

(2) x = const, x, ü = U(u), v = V(v). 

A point y given by an expression of the form 

(3) y = XiX + xixu + oczXv + x^xuv 

is said to have local coordinates referred to the 
local tetrahedron X j X<u j X<D j Xuv 

with suitably chosen unit point. 
The vertices of this tetrahedron are covariant points; in 
fact the line XJL"WV l o the projective normal and the line 
xuxv is the reciprocal polar of this line with respect to the 
quadric of Lie ; the vertex 

Xuv *S the point where the tangent 
of the curve u = const, on the surface generated by the point 
xu meets the projective normal. The effect of (2) on the local 
coordinates is the change of unit point given by 

(4) Xi = Xi, X2 = U'X2, X$ = F ' # 3 , X4 = U'V'XÏ, 

accents indicating differentiation with respect to the var
iables of the functions concerned. 

The equation of the canonical plane of 5 at P is 

(5) 4>x2 — ^#3 = 0, 

where 
«\ *\ 

(6) 0 = — log 072, * = — log 0 V 
du ov 

And the coordinates of the canonical point are (0, ^ , —<f>, 0), 

3. The Derivatives of the Local Coordinates. We shall first 
give some formulas for the local coordinates of the two first-
order derivative points of the point y given by (3). By easy 
calculation we find 

j yu = yix + y^Xu + y*xv + y^xUVi 

\yv = Z\X + Z2XU + ZzXv + ZtXuv, 
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where 

1 y 1 == X\u 

y 2 = #2« + «1 + QuX2 + (py + 0 * 4 , 

3>3 = #3t* + P%2 + 7TX4, 

y A = x4u + xs + 0wx4, 

*i = #it> + ##3 + (qu + yp)x4, 

Z2 = X2v + yXs + X#4, 

23 = #3* + xi + 6zxv + ((3y + 6uv)x4, 

{ Z\ = X4v + X2 + #v#4, 

the functions 7r, % being defined by 

(8) 

(9) 7T = p + #£, X = g + 70. 

I t occasionally happens tha t we have the equation in local 
coordinates of a surface covariantly connected with a point P 
of S and wish to find the envelope of this surface as P varies 
on 5. The usual method of procedure is to differentiate 
partially with respect to u and with respect to v in the 
equation and then to solve the two resulting equations with 
the original to obtain the points of contact of the surface 
with its envelope. We shall now obtain the differentiation 
formulas to be used in such a situation. 

The coordinates of a point x on 5 near Px are given* by the 

expansions 

(10) 
(Xi = 

\xz = 
*1 = 1 + • 

Av + 
X2 = Aw + 

#4 = 0 + ' 

And the coordinates y, z, w of the corresponding points 

XUJ XV, XUV near Xuy xVf xuv respectively are given in order by 

the power series 

* Stouffer and Lane, Recent developments in projective differential 
geometry, this Bulletin, vol. 34 (1928), pp. 453-472. See part B, equation 2. 
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(11) 

(12) 

(13) 

ƒ yi = pAu + • • • , y2 = 1 + OuAu + • • • , 

\ yz = 0Aw + • • • , ?4 = Av + • • • ; 

ƒ *i = qAv + • • • , s2 = 7Az> + • • • , 

\zz = l + ^ A v + • • -, 24 = Aw + • • • ; 

Wi = (pv + pq)Au + (qu + yp)Av + • • • , 

w2 = (07 + Buv)Au + xAv + • • • , 

wz = TTAW + (07 + 6uv)Av + • • • , 

Wi = 1 + #t*Aw + 0vAt/ + • • • • 

If a point has coordinates xi, • • • , x\ referred to the original 

tetrahedron x, xUl xv, xuv and coordinates xi, • • • , X°A referred 
to the neighboring tetrahedron *£, Xuf Xi)y Xuvi 

the transforma
tion between the tetrahedrons is found to be given by 

X\ = Xi — X2pAu — XsqAv — x4 [(pv + Pq)Au 

+ (qu + 7p)Av] + • • • , 

#2 = — XiAu + x2(l — BuAu) — xzyAv 

- x4[((3y + 6uv)Au - xAv] + • • • , 

Xz = — #iAz; — X2@Au + #3(1 — OvAv) 
- ^[TTAW + (07 + 0M„)Az>] + * * ' > 

x4 = — #2Afl— #3Aw+ #4(1 — BuAu— dvAv) + • • • . 

Holding v = const, and taking the limit in these formulas as 
Au approaches zero (having first transposed certain terms 
and then divided by Aw), and then interchanging the roles 
of u and v and repeating the process, we obtain the desired 
formulas for the differentiation of the local coordinates : 

Xlu = — pX2 — (pv + /fy)#4, 

X2u = — Xi — duX2 ~ (07 + Ouv)x±, 

Xzu = — 0#2 ~ ITXi, 

X4u == ~~~ Xz "*~" üu X4 j 

xiv = ~ qxz — (qu + yp)xi, 

X2v = — yxz — x # 4 , 

Xzv = — Xi — 0t,#3 — ( 0 7 + 0wt>)#4, 

^ X4v = s ~~" A/2 """"" vyX^» 

(14) 

(15) 
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4. Applications to the Local Tetrahedron. I t follows from 
statements in §2 that the loci of the points oc<uf oc>uf 0Cy,v are three 
surfaces covariant to S. Moreover these surfaces and S 
have their points in correspondence, corresponding points 
being those that have the same curvilinear coordinates. 
Without giving details of the calculations we shall simply 
remark that if we place xi = x, X2 = xuy Xz = xv, Xt~xuv, ul~u, 
u2~v, it is easy to determine a system of linear differential 
equations* of the form 

dx- 4 

(16) — - = J^diipX,, (i = 1, • • • , 4 ; p = 1,2), 
dup j=i 

satisfied by the coordinates of these four points. Then the 
results of D. Sun on quadruples of surfaces with points 
in correspondence can be applied to these four surfaces. 
Moreover, each of the three pairs of opposite edges of the 
local tetrahedron generates two congruences with generators 
in correspondence, to which the results of A. Cook on pairs 
of congruences with generators in correspondence can be 
applied, t 

The envelopes of the faces of the local tetrahedron are 
again a quadruple of surfaces with points in correspondence. 
I t is geometrically obvious, and easily demonstrated by (IS), 
tha t the face #4 = 0 envelops S itself. The points of contact 
of the faces Xi = 0, #2 = 0, x3 = 0 with their envelopes are found 
by (15) to have respectively the coordinates 

( [0, - q(pv + Pq), - P(qu + yp) ,pq], 

(17) < [ ~ T 0 3 Y + < U , O , - X , Y ] , 

( [ - 0 ( 0 7 + 0 , - * , 0 , j 8 ] . 

If, for instance, the last two of these points are joined we 
obtain a generator of a congruence covariant to 5, and so a 

* Lane, The projective differential geometry of systems of linear homo
geneous differential equations of the first order, Transactions of this Society, 
vol. 30 (1928), pp. 785-796. See §5. 

t Sun, Cook; Chicago Doctoral Dissertations (1928-29). 
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wide variety of possibilities for the construction of covariant 
configurations is suggested. 

5. Applications to the Canonical Surfaces. If î  = 0, the 
canonical point coincides with the point xv. Let us suppose 
^5^0, and place 

(18) X = 4>/f. 

Then the local coordinates of the canonical point are (0, 1, 
—X, 0) and the equation of the canonical plane is 

(19) \x2 - xz = 0. 

Applying (15) to (19) we find that the envelope of the 
canonical plane, as u, v vary, is a surface, which we shall call 
the first canonical surface Si, and whose point of contact with 
the plane is given by the formulas 

(xi=— (Py + duv)xi + 7r(Xv + 0V\ — 7X2) 

+ xX(X„ + /3-0MX), 

\ X2 = ~ 7T + XX2, #3 = X#2, 

I x4 = XM + XX, + P - Buk + dv\
2 - 7X3. 

The locus of the canonical point, as u, v vary, is the second 
canonical surface S2, whose tangent plane can be shown by 
means of (8) to have coordinates given by 

r «1 = xM + \\v - p - eu\ + ev\
2 + 7X3, 

(21) < U2 = \uz, Uz = p — q\2, 

v ut = p(\v + ev\ + 7X2) + ?x(xM - p - eu\). 

I t will be observed that the two surfaces Si, S2 correspond 
in the dualistic transformation that converts each point P of 
S into the tangent plane of S at P. Analytically this kind 
of duality* is represented in the present notation by the 
transformation 

* Lane, The correspondence between the tangent plane of a surface and 
its point of contact, American Journal of Mathematics, vol. 48 (1926), 
p. 204. 
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(22) Xi = ~ (jfry + Quv)U\ + ^4 , #2 = ~ ^ 3 , Xz= — U2, Xi = WX 

accompanied by the substitution 

( 8 y p q dv/du\ 

~ jÔ — 7 7T X — ^^/^^ / 

We shall make a few remarks about 52, understanding that 
similar remarks, mutatis mutandis, can be made about Si. 

The tangent plane of 52 passes through Px in case 

(24) Xw + XX, - 0 - 6U\ + 6U2 + 7X3 = 0, 

and then its line of intersection with the tangent plane of S 
is the second canonical tangent joining Px to the canonical 
point. In this case the canonical curves of the first kind 
dv—\du = 0 are dual union curves of the reciprocal of the 
projective normal congruence, so that the ray-point of the 
first canonical curve through Px lies on the reciprocal 
XA = Xi = 0 of the projective normal, being in fact the canonical 
point itself. 

The tangent plane of 52 meets the tangent plane of 5 in the 
reciprocal of the projective normal in case 

(25) p-q\* = 0, 

being in this case the plane x i ~ 0 . Then the canonical curves 

(26) dv2 - \2du2 

correspond to the developables of the reciprocal of the pro
jective normal congruence, which is therefore harmonic to the 
conjugate net of canonical curves. 

The locus of the canonical point is a curve in case (24) 
and (25) are satisfied simultaneously. 

6. The Canonical Pencil of Conjugate Nets. A pencil of 
conjugate nets on a surface is the class of oo1 conjugate 
nets every one of which has the property that at every 
point of the surface its two tangents form with the tangents 
of a fundamental conjugate net the same cross ratio. The 
covariant pencil of conjugate nets determined by the canonical 
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conjugate net (26) will be called the canonical pencil. The 
differential equation of a general net of this pencil is 

(27) dv2 - \2h2du2 = 0 (h = const.). 

The envelope of the osculating planes at P of all curves 
of the canonical pencil that pass through P is the axis-plane* 
cone 

(28) u\ = Utfiim — jto3
8 — yu£ = 0 

where 

(29) m = 2u4 - (6U - \u/\)uz - (dv + \v/\)u2. 

The cusp-axis of this cone joins Px to the point 

(0, — 0V — Xv/X, — 0U + XM/X,2), 

which lies in the canonical plane in case 

(30) x(0„ + x„/x) = eu - xM/x. 

Let us suppose that (30) is not satisfied. Then the plane 
Xi#2 — #3 = 0, where 

Qu — X M /X 
(31) Xx = 

0y + Xv/X 

contains the cusp-axis and the projective normal. The curves 
enveloped by the line of intersection of this plane with the 
tangent plane of S, together with their conjugates, form a new 
covariant conjugate net 

(32) dv2 - X i W = 0, 

and the process can be repeated indefinitely. In this way we 
obtain a sequence of covariant conjugate nets. 

THE UNIVERSITY OF CHICAGO 

* Lane, A general theory of conjugate nets, Transactions of this Society, 
vol. 23 (1922), p. 283. 


