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A LEMMA OF T H E THEORY OF LINEAR 
D I F F E R E N T I A L SYSTEMS* 

BY J. D. TAMARKIN 

The reading of the preceding note by W. M. Whyburn 
suggests to me a lemma which, although it is simple, deserves 
to be stated and proved separately. The results of Whyburnf as 
well as those of Miss Whelanf may be derived immediately 
from this lemma. 

We shall use the matrix notation and designate by German 
capitals the square matrices of n rows and n columns, and by 
small German letters the ^-dimensional vectors, with the usual 
agreements as to the products of matrices by matrices or by 
vectors and so on. 

By a solution of a linear differential system of wth order 
with integrable (L) coefficients we shall mean a vector whose 
components are absolutely continuous and satisfy the system 
almost everywhere. 

LEMMA. Let the coefficients a#(#), a^ix), bi (x), bi (x) of the 
linear differential system 

dti'(x) 
(1) - — = »'(*)•*'(*)+ b'(*), 

ax 
dW'(x) 

(2) - — = »''(*)•*"(*) + *"(*) 
dx 

be integrable on (0, 1). Let 

max < ^ I I aij{x) I dx> = Mi, 
i \ 3=1 J o / 

max < ]>3 I I a%j(x) \ dx> = M2, 
j \ y=i J 0 ) 

* Presented to the Society, October 26, 1929. 
t See also § 4 of Whyburn's paper referred to, on p. 94 of this issue. 
% This Bulletin, vol. 35 (1929), pp. 112-119. Our lemma is but a slight 

modification of and is proved in a much the same way as lemma v (p. 116) 
of Miss Whelan. 
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| bi(x) | dx > = Ni, 

max { f | bi'\x)\ dx\ = N2, 

max < I ^ | a\j{x) — a"j{x) \ dx> = e, 
* V J 0 2=1 / 

max < I \ b{ (x) — b" (x)\dx> = rj. 

(i = 1,2, • • • , » ) , 

Le£ c be a vector with constant components and maxft-{ |c» |} = C. 
Then, ifï}f(x), ï}"(x) are respectively the solutions of (1) and (2) 
satisfying the initial conditions 

(3) «'(0) = «"(O) = c, 

w/e fowe 0?z (0, 1) 

•fo + e ^ i y » , iTx = (C + tfi)**, 

( i = 1,2, • • • , » ) . 

We observe first that the solution of a system 

a\(x) 
(5) - — = »(*)•>(*) + *(*) 

ax 
with integrable coefficients exists and is uniquely determined 
by its initial values: 

(6) t)(0) = c. 

Furthermore, on setting 

max I ]T) I I aij(x) I dx > = M, max < I | bi(x) \dx> = N, 

the following inequalities hold: 

(7) | yi{x) | S (C + i v y , (f = 1,2, . . . , n). 

The proof of these facts is readily obtained by means of the 
classical method of successive approximations in a slightly 

(4) | y / ( * ) - ? / ' ( * ) | Ik | | 
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modified form, due to the non-boundedness of the functions 
<iij(x) and bi(x). The method of successive approximations 
must be applied not directly to the system (5) but rather to 
the equivalent system of integral equations* 

(8) 
/» X /» X 

1,0) = c + I b(fidt+ I %(t)-\,(t)dt. 
J 0 " 0 

Now we can replace systems (1) and (2) with the initial 
conditions (3) by the equivalent systems of integral equations 

!)'(*) =C+ Ç\\t)dt+ fV(0V(0*, 
•J o J o 

D"(*) = C + fl"(f)d(+ f V(*) •*"(/)#, 

whence 

*'(*) - *"(*) s n(x) = f Vo* + f *mh(t)dt 
«^ 0 *^ 0 

where we have put 

b(x) = b'(*)-£>"(*) + \ 

and 

f'[a'«)-r(/)]-»'p 
or 

J o 

«"(*) or 

Using (7) we get the proof of our lemma. 
If inequality (7) is assumed our lemma can be derived from 

a general existence theorem by Carathéodory.f But this in
equality does not follow directly from Carathéodory's discussion. 
Moreover the method used above presents the advantage of 
giving an explicit estimate for the difference. 

We can leave to the reader the derivation of the results of 
W. M. Whyburn and of Miss Whelan, as well as the applica-

* Tamarkin, Some general problems of the theory of ordinary linear differential 
equations, Petrograd, 1917, pp. 29-39 (in Russian). 

f Vorlesungen ilber réelle Funktionen, Teubner, Leipzig, 1927, p. 678. 
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tion of this lemma to the case where the coefficients of the system 
(5) and the initial data (6) depend on a parameter. The interval 
(0, 1) of course can be replaced by an arbitrary interval (a, &), 
the initial values t)'(0), ty"(0) may be made distinct and the 
whole theory can be extended to systems of infinitely many 
equations, under suitable restrictions upon the matrices and 
vectors involved. 

BROWN UNIVERSITY 

ON T H E N U M B E R OF APPARENT MULTIPLE 
POINTS OF VARIETIES IN HYPERSPACE 

BY B. C. WONG 

By an apparent point of multiplicity 5 on a variety in f-space 
we mean a line which passes through a given point in r-space 
and meets the variety in s distinct points. In order that the 
number of such apparent 5-fold points on a variety V? of order 
m and of x dimensions be finite, we must have r = st + l, 
x = (s — 1)/, where / is the number less one of the hypersurfaces 
intersecting in the variety. In other words, the number of 
apparent 5-fold points on a VZ—\)t which is the intersection of 
/ + 1 hypersurfaces in Sat+i is finite. It is the purpose of this 
paper to determine this number and also to determine its upper 
and lower limits. 

We shall use the symbols Hsr), h^ to denote respectively the 
maximum and minimum number of apparent 5-fold points that 
a VZ-i)t of any order m in Sr[r = st + l] can have,and the sym
bol h{p to denote the number of those that a V™s-i)t of order 
m = n1n2 • • • nt+i, which is the complete intersection of t + l 
hypersurfaces of orders »i, w2, • • • , nt+i respectively, ordinarily 
has. Thus if 5 = 2, / = 1 and therefore r = 3, a curve Cm in 5 3 can 
have at most 

(1) #2
(3) = (m - l)(m - 2)/2 , 

and at least 

(2) ^2
(3) = m{m — 2)/4, for m even, 

and 

(2r) héz) = (ni- l ) 2 /4 , for m odd, 


