This theorem is a consequence of Theorems 1^{\prime} and 4^{\prime} and the result of Sierpinski, used by Professor Moore in the proof of Theorem 5.

New York University

NOTE ON A SCHOLIUM OF BAYES

by F. h. MURRAY
In his fundamental paper on a posteriori probability,* Bayes considered a certain event M having an unknown probability p of its occurring in a single trial. In deriving his a posteriori formula he assumed that all values of p are equally likely, and he recommended this assumption for similar problems in which nothing is known concerning p. In the corollary to proposition 8 he derives the value

$$
\int_{0}^{1}\binom{n}{x} p^{x}(1-p)^{n-x} d p=\frac{1}{n+1}
$$

for the probability of x successes in n trials. This result is independent of x; in a scholium he observes that this consequence is what is to be expected, on common sense grounds, from complete ignorance concerning p, and this concordance is considered to justify the assumption that all values of p are equally likely. \dagger

In order to complete the argument of the scholium it is necessary to show that no other frequency distribution for p has the same property.

More precisely, given that a cumulative frequency function $f(p)$ has the property that for $0 \leqq x \leqq n, x, n$ being integers,

$$
\int_{0}^{1}\binom{n}{x} p^{x}(1-p)^{n-x} d f(p)=\frac{1}{n+1}
$$

[^0]it is required to determine $f(p)$ from this equation. Now if $n=x$, the equation becomes
$$
\int_{0}^{1} p^{x} d f(p)=\frac{1}{x+1}
$$
consequently the moments of $f(p)$ are known. The function $f(p)$ can be completely calculated from these moments with the aid of a theorem of Stieltjes.*

Let

$$
\begin{aligned}
F(z) & =\int_{0}^{1} \frac{d f(p)}{p+z}=\frac{1}{z} \int_{0}^{1} \frac{d f(p)}{1+\frac{p}{z}} \quad(|z|>2) \\
& =\frac{1}{z}\left[\int_{0}^{1} d f-\frac{1}{z} \int_{0}^{1} p d f+\frac{1}{z^{2}} \int_{0}^{1} p^{2} d f-\frac{1}{z^{3}} \int_{0}^{1} p^{3} d f+\cdots\right]
\end{aligned}
$$

If f is the function already discussed, this becomes

$$
\begin{aligned}
F(z) & =\frac{1}{z}-\frac{1}{2 z^{2}}+\frac{1}{3 z^{3}}-\frac{1}{4 z^{4}}+\cdots \\
& =\log \left(\frac{z+1}{z}\right)
\end{aligned}
$$

Consequently the function f satisfies the equation (for $|z|>2$)

$$
\log \left(\frac{z+1}{z}\right)=\int_{0}^{1} \frac{d f(p)}{p+z}
$$

From the theorem of Stieltjes, if $\psi(x)$ is a non-decreasing function of x, and

$$
F(z)=\int_{-\infty}^{\infty} \frac{d \psi(x)}{z+x}
$$

then

$$
\begin{aligned}
\frac{\psi(\xi-0)+\psi(\xi+0)}{2} & -\frac{\psi(a-0)+\psi(a+0)}{2} \\
& =\lim _{\eta=+0} R\left(\frac{1}{\pi i} \int_{-\xi-i \eta}^{-a-i \eta} F(z) d z\right) .
\end{aligned}
$$

[^1]Now the function $F(z)=\log \{(z+1) / z\}$ can be defined on the real axis by continuation, hence the limits above and below the real axis are uniquely determined. Suppose ξ, a on the segment $0<a<\xi<1$.

Then

$$
\begin{aligned}
\int_{-\xi-i \eta}^{-a-i \eta} & {[\log (z+1)-\log z] d z } \\
& =\int_{-\xi}^{-a}[\log (1+x-i \eta)-\log (x-i \eta)] d x \\
\quad & =\left[\begin{array}{c}
(1+x-i \eta) \log (1+x-i \eta)-(1+x-i \eta) \\
-(x-i \eta) \log (x-i \eta)+(x-i \eta)
\end{array}\right]_{-\xi}^{-a}
\end{aligned}
$$

Now

$$
(1+x-i \eta) \log (1+x-i \eta)-(1+x-i \eta)
$$

approaches real limits, for $x=-a, x=-\xi$, as $\eta \rightarrow 0$, hence makes no contribution to the sum required. We have only to consider

$$
-(-a-i \eta) \log (-a-i \eta)+(-\xi-i \eta) \log (-\xi-i \eta)
$$

Now as $\eta \rightarrow 0,-\xi-i \eta \rightarrow-\xi$. Since the approach is from below the axis of reals, and since the argument of $\log z$, like that of $\log (1+z)$, is zero for a real positive z, the argument here is $-i \pi$. Hence this sum becomes

$$
(a+i \eta)[-\pi i+\log (a+i \eta)]-(\xi+i \eta)[-\pi i+\log (\xi+i \eta)]
$$

This approaches the limit, as $\eta \rightarrow 0$,

$$
\pi i(\xi-a)+a \log a-\xi \log \xi
$$

Hence

$$
\lim _{\eta \rightarrow 0} R\left[\frac{1}{\pi i} \int_{-\xi-i \eta}^{-a-i \eta} F(z) d z\right]=\xi-a
$$

Substituting in the identity, we find

$$
\frac{\psi(\xi-0)+\psi(\xi+0)}{2}-\frac{\psi(a-0)+\psi(a+0)}{2}=\xi-a
$$

or

$$
\frac{\psi(\xi-0)+\psi(\xi+0)}{2}=\xi+\text { const } .
$$

Consequently ψ itself is continuous, $0<\xi<1$.
Now if $a>1, \xi>1$, the integral

$$
\int_{-\xi}^{-a}[\log (z+1)-\log z] d z
$$

is seen to be real, hence

$$
\frac{1}{2}[\psi(\xi-0)+\psi(\xi+0)]-\frac{1}{2}[\psi(a-0)+\psi(a+0)]=0
$$

The same is true if both a and ξ are negative.
There are three additive constants yet to be determined, one on each of the intervals $(-\infty, 0),(0,1),(1, \infty)$. If it is assumed that $\psi(-\infty)=0, \psi(+\infty)=1$, and ψ is a non-decreasing function,

$$
\begin{aligned}
\psi(+\infty)-\psi(-\infty)= & 1=\psi(+0)-\psi(-0) \\
& +\psi(1-0)-\psi(+0) \\
& +\psi(1+0)-\psi(1-0)
\end{aligned}
$$

The central term being one, the two remaining terms vanish. Hence $\psi(-0)=\psi(+0)=0, \psi(1+0)=\psi(1-0)=1$. Finally

$$
\psi(\xi)=\left\{\begin{array}{lll}
0, & \text { if } & \xi=0 \\
\xi, & \text { if } & 0<\xi<1 \\
1, & \text { if } & 1<\xi
\end{array}\right.
$$

American Telegraph and Telephone Company

[^0]: * Bayes, An essay towards solving a problem in the doctrine of chances, Philosophical Transactions of the Royal Society, vol. 53 (1763), pp. 370-418.
 \dagger In other words, the assumption "all values of p are equally likely" is equivalent to the assumption "any number x of successes in n trials is just as likely as any other number $y, x \leqq n, y \leqq n$." It has been suggested verbally by Mr. E. C. Molina that this proposition has a possible importance in certain statistical questions.

[^1]: * Stieltjes, Récherches sur les fractions continues, Annales de Toulouse, vol. 8 (1894), pp. 172-175. Also, Perron, Die Lehre von den Kettenbrüchen, p. 372.

